Weber, Jeffrey K.
Leveraging Large Language Models to Predict Antibody Biological Activity Against Influenza A Hemagglutinin
Barkan, Ella, Siddiqui, Ibrahim, Cheng, Kevin J., Golts, Alex, Shoshan, Yoel, Weber, Jeffrey K., Mota, Yailin Campos, Ozery-Flato, Michal, Sautto, Giuseppe A.
Monoclonal antibodies (mAbs) represent one of the most prevalent FDA-approved modalities for treating autoimmune diseases, infectious diseases, and cancers. However, discovery and development of therapeutic antibodies remains a time-consuming and expensive process. Recent advancements in machine learning (ML) and artificial intelligence (AI) have shown significant promise in revolutionizing antibody discovery and optimization. In particular, models that predict antibody biological activity enable in-silico evaluation of binding and functional properties; such models can prioritize antibodies with the highest likelihoods of success in costly and time-intensive laboratory testing procedures. We here explore an AI model for predicting the binding and receptor blocking activity of antibodies against influenza A hemagglutinin (HA) antigens. Our present model is developed with the MAMMAL framework for biologics discovery to predict antibody-antigen interactions using only sequence information. To evaluate the model's performance, we tested it under various data split conditions to mimic real-world scenarios. Our models achieved an AUROC $\geq$ 0.91 for predicting the activity of existing antibodies against seen HAs and an AUROC of 0.9 for unseen HAs. For novel antibody activity prediction, the AUROC was 0.73, which further declined to 0.63-0.66 under stringent constraints on similarity to existing antibodies. These results demonstrate the potential of AI foundation models to transform antibody design by reducing dependence on extensive laboratory testing and enabling more efficient prioritization of antibody candidates. Moreover, our findings emphasize the critical importance of diverse and comprehensive antibody datasets to improve the generalization of prediction models, particularly for novel antibody development.
MAMMAL -- Molecular Aligned Multi-Modal Architecture and Language
Shoshan, Yoel, Raboh, Moshiko, Ozery-Flato, Michal, Ratner, Vadim, Golts, Alex, Weber, Jeffrey K., Barkan, Ella, Rabinovici-Cohen, Simona, Polaczek, Sagi, Amos, Ido, Shapira, Ben, Hazan, Liam, Ninio, Matan, Ravid, Sivan, Danziger, Michael M., Morrone, Joseph A., Suryanarayanan, Parthasarathy, Rosen-Zvi, Michal, Hexter, Efrat
Drug discovery typically consists of multiple steps, including identifying a target protein key to a disease's etiology, validating that interacting with this target could prevent symptoms or cure the disease, discovering a small molecule or biologic therapeutic to interact with it, and optimizing the candidate molecule through a complex landscape of required properties. Drug discovery related tasks often involve prediction and generation while considering multiple entities that potentially interact, which poses a challenge for typical AI models. For this purpose we present MAMMAL - Molecular Aligned Multi-Modal Architecture and Language - a method that we applied to create a versatile multi-task multi-align foundation model that learns from large-scale biological datasets (2 billion samples) across diverse modalities, including proteins, small molecules, and genes. We introduce a prompt syntax that supports a wide range of classification, regression, and generation tasks. It allows combining different modalities and entity types as inputs and/or outputs. Our model handles combinations of tokens and scalars and enables the generation of small molecules and proteins, property prediction, and transcriptomic lab test predictions. We evaluated the model on 11 diverse downstream tasks spanning different steps within a typical drug discovery pipeline, where it reaches new SOTA in 9 tasks and is comparable to SOTA in 2 tasks. This performance is achieved while using a unified architecture serving all tasks, in contrast to the original SOTA performance achieved using tailored architectures. The model code and pretrained weights are publicly available at https://github.com/BiomedSciAI/biomed-multi-alignment and https://huggingface.co/ibm/biomed.omics.bl.sm.ma-ted-458m.
Combining docking pose rank and structure with deep learning improves protein-ligand binding mode prediction
Morrone, Joseph A., Weber, Jeffrey K., Huynh, Tien, Luo, Heng, Cornell, Wendy D.
We present a simple, modular graph-based convolutional neural network that takes structural information from protein-ligand complexes as input to generate models for activity and binding mode prediction. Complex structures are generated by a standard docking procedure and fed into a dual-graph architecture that includes separate sub-networks for the ligand bonded topology and the ligand-protein contact map. This network division allows contributions from ligand identity to be distinguished from effects of protein-ligand interactions on classification. We show, in agreement with recent literature, that dataset bias drives many of the promising results on virtual screening that have previously been reported. However, we also show that our neural network is capable of learning from protein structural information when, as in the case of binding mode prediction, an unbiased dataset is constructed. We develop a deep learning model for binding mode prediction that uses docking ranking as input in combination with docking structures. This strategy mirrors past consensus models and outperforms the baseline docking program in a variety of tests, including on cross-docking datasets that mimic real-world docking use cases. Furthermore, the magnitudes of network predictions serve as reliable measures of model confidence