Weber, Ingo
FhGenie: A Custom, Confidentiality-preserving Chat AI for Corporate and Scientific Use
Weber, Ingo, Linka, Hendrik, Mertens, Daniel, Muryshkin, Tamara, Opgenoorth, Heinrich, Langer, Stefan
Since OpenAI's release of ChatGPT, generative AI has received significant attention across various domains. These AI-based chat systems have the potential to enhance the productivity of knowledge workers in diverse tasks. However, the use of free public services poses a risk of data leakage, as service providers may exploit user input for additional training and optimization without clear boundaries. Even subscription-based alternatives sometimes lack transparency in handling user data. To address these concerns and enable Fraunhofer staff to leverage this technology while ensuring confidentiality, we have designed and developed a customized chat AI called FhGenie (genie being a reference to a helpful spirit). Within few days of its release, thousands of Fraunhofer employees started using this service. As pioneers in implementing such a system, many other organizations have followed suit. Our solution builds upon commercial large language models (LLMs), which we have carefully integrated into our system to meet our specific requirements and compliance constraints, including confidentiality and GDPR. In this paper, we share detailed insights into the architectural considerations, design, implementation, and subsequent updates of FhGenie. Additionally, we discuss challenges, observations, and the core lessons learned from its productive usage.
LLMs for Science: Usage for Code Generation and Data Analysis
Nejjar, Mohamed, Zacharias, Luca, Stiehle, Fabian, Weber, Ingo
Large language models (LLMs) have been touted to enable increased productivity in many areas of today's work life. Scientific research as an area of work is no exception: the potential of LLM-based tools to assist in the daily work of scientists has become a highly discussed topic across disciplines. However, we are only at the very onset of this subject of study. It is still unclear how the potential of LLMs will materialise in research practice. With this study, we give first empirical evidence on the use of LLMs in the research process. We have investigated a set of use cases for LLM-based tools in scientific research, and conducted a first study to assess to which degree current tools are helpful. In this paper we report specifically on use cases related to software engineering, such as generating application code and developing scripts for data analytics. While we studied seemingly simple use cases, results across tools differ significantly. Our results highlight the promise of LLM-based tools in general, yet we also observe various issues, particularly regarding the integrity of the output these tools provide.
Large Process Models: Business Process Management in the Age of Generative AI
Kampik, Timotheus, Warmuth, Christian, Rebmann, Adrian, Agam, Ron, Egger, Lukas N. P., Gerber, Andreas, Hoffart, Johannes, Kolk, Jonas, Herzig, Philipp, Decker, Gero, van der Aa, Han, Polyvyanyy, Artem, Rinderle-Ma, Stefanie, Weber, Ingo, Weidlich, Matthias
The continued success of Large Language Models (LLMs) and other generative artificial intelligence approaches highlights the advantages that large information corpora can have over rigidly defined symbolic models, but also serves as a proof-point of the challenges that purely statistics-based approaches have in terms of safety and trustworthiness. As a framework for contextualizing the potential, as well as the limitations of LLMs and other foundation model-based technologies, we propose the concept of a Large Process Model (LPM) that combines the correlation power of LLMs with the analytical precision and reliability of knowledge-based systems and automated reasoning approaches. LPMs are envisioned to directly utilize the wealth of process management experience that experts have accumulated, as well as process performance data of organizations with diverse characteristics, e.g., regarding size, region, or industry. In this vision, the proposed LPM would allow organizations to receive context-specific (tailored) process and other business models, analytical deep-dives, and improvement recommendations. As such, they would allow to substantially decrease the time and effort required for business transformation, while also allowing for deeper, more impactful, and more actionable insights than previously possible. We argue that implementing an LPM is feasible, but also highlight limitations and research challenges that need to be solved to implement particular aspects of the LPM vision.
Augmented Business Process Management Systems: A Research Manifesto
Dumas, Marlon, Fournier, Fabiana, Limonad, Lior, Marrella, Andrea, Montali, Marco, Rehse, Jana-Rebecca, Accorsi, Rafael, Calvanese, Diego, De Giacomo, Giuseppe, Fahland, Dirk, Gal, Avigdor, La Rosa, Marcello, Völzer, Hagen, Weber, Ingo
These opportunities require a significant shift in the way the BPMS operates and interacts with its operators(both human and digital agents). While traditional BPMSs encode pre-defined flows and rules, an ABPMS is able to reason about the current state of the process(or across several processes) to determine a course of action that improves the performance of the process. To fully exploit this capability, the ABPMS needs a degree of autonomy. Naturally, this autonomy needs to be framed by operational assumptions, goals, and environmental constraints. Also, ABPMSs need to engage conversationally with human agents, they need to explain their actions, and they need to recommend adaptations or improvements in the way the process is performed. This manifesto outlined a number of research challenges that need to be overcome to realize systems that exhibit these characteristics.
SAP Speaks PDDL
Hoffmann, Joerg (INRIA) | Weber, Ingo (University of New South Wales) | Kraft, Frank Michael (SAP)
In several application areas for Planning, in particular helping with the creation of new processes in Business Process Management (BPM), a major obstacle lies in the modeling. Obtaining a suitable model to plan with is often prohibitively complicated and/or costly. Our core observation in this work is that, for software-architectural purposes, SAP is already using a model that is essentially a variant of PDDL. That model describes the behavior of Business Objects, in terms of status variables and how they are affected by system transactions. We show herein that one can leverage the model to obtain (a) a promising BPM planning application which incurs hardly any modeling costs, and (b) an interesting planning benchmark. We design a suitable planning formalism and an adaptation of FF, and we perform large-scale experiments. Our prototype is part of a research extension to the SAP NetWeaver platform.