Goto

Collaborating Authors

 Webb, Brandyn J.


Combining Neural Networks and Context-Driven Search for Online, Printed Handwriting Recognition in the NEWTON

AI Magazine

We discuss a combination and improvement of classical methods to produce robust recognition of hand-printed English text for a recognizer shipping in new models of Apple Computer's NEWTON MESSAGEPAD and EMATE. Combining an artificial neural network (ANN) as a character classifier with a context-driven search over segmentation and word-recognition hypotheses provides an effective recognition system. Long-standing issues relative to training, generalization, segmentation, models of context, probabilistic formalisms, and so on, need to be resolved, however, to achieve excellent performance. We present a number of recent innovations in the application of ANNs as character classifiers for word recognition, including integrated multiple representations, normalized output error, negative training, stroke warping, frequency balancing, error emphasis, and quantized weights.


Combining Neural Networks and Context-Driven Search for Online, Printed Handwriting Recognition in the NEWTON

AI Magazine

While online handwriting recognition is an area of long-standing and ongoing research, the recent emergence of portable, pen-based computers has focused urgent attention on usable, practical solutions. We discuss a combination and improvement of classical methods to produce robust recognition of hand-printed English text for a recognizer shipping in new models of Apple Computer's NEWTON MESSAGEPAD and EMATE. Combining an artificial neural network (ANN) as a character classifier with a context-driven search over segmentation and word-recognition hypotheses provides an effective recognition system. Long-standing issues relative to training, generalization, segmentation, models of context, probabilistic formalisms, and so on, need to be resolved, however, to achieve excellent performance. We present a number of recent innovations in the application of ANNs as character classifiers for word recognition, including integrated multiple representations, normalized output error, negative training, stroke warping, frequency balancing, error emphasis, and quantized weights. User adaptation and extension to cursive recognition pose continuing challenges.


Effective Training of a Neural Network Character Classifier for Word Recognition

Neural Information Processing Systems

We have combined an artificial neural network (ANN) character classifier with context-driven search over character segmentation, word segmentation, and word recognition hypotheses to provide robust recognition of hand-printed English text in new models of Apple Computer's Newton MessagePad. We present some innovations in the training and use of ANNs al; character classifiers for word recognition, including normalized output error, frequency balancing, error emphasis, negative training, and stroke warping. A recurring theme of reducing a priori biases emerges and is discussed.


Effective Training of a Neural Network Character Classifier for Word Recognition

Neural Information Processing Systems

We have been conducting research on bottom-up classification techniques ba;ed on trainable artificial neural networks (ANNs), in combination with comprehensive but weakly-applied language models. To focus our work on a subproblem that is tractable enough to le.:'ld to usable products in a reasonable time, we have restricted the domain to hand-printing, so that strokes are clearly delineated by pen lifts. In the process of optimizing overall performance of the recognizer, we have discovered some useful techniques for architecting and training ANNs that must participate in a larger recognition process. Some of these techniques-especially the normalization of output error, frequency balanCing, and error emphal;is-suggest a common theme of significant value derived by reducing the effect of a priori biases in training data to better represent low frequency, low probability smnples, including second and third choice probabilities. There is mnple prior work in combining low-level classifiers with various search strategies to provide integrated segmentation and recognition for writing (Tappert et al 1990) and speech (Renals et aI1992). And there is a rich background in the use of ANNs a-; classifiers, including their use as a low-level, character classifier in a higher-level word recognition system (Bengio et aI1995).