Not enough data to create a plot.
Try a different view from the menu above.
Wattenberg, Martin
Open Problems in Mechanistic Interpretability
Sharkey, Lee, Chughtai, Bilal, Batson, Joshua, Lindsey, Jack, Wu, Jeff, Bushnaq, Lucius, Goldowsky-Dill, Nicholas, Heimersheim, Stefan, Ortega, Alejandro, Bloom, Joseph, Biderman, Stella, Garriga-Alonso, Adria, Conmy, Arthur, Nanda, Neel, Rumbelow, Jessica, Wattenberg, Martin, Schoots, Nandi, Miller, Joseph, Michaud, Eric J., Casper, Stephen, Tegmark, Max, Saunders, William, Bau, David, Todd, Eric, Geiger, Atticus, Geva, Mor, Hoogland, Jesse, Murfet, Daniel, McGrath, Tom
Mechanistic interpretability aims to understand the computational mechanisms underlying neural networks' capabilities in order to accomplish concrete scientific and engineering goals. Progress in this field thus promises to provide greater assurance over AI system behavior and shed light on exciting scientific questions about the nature of intelligence. Despite recent progress toward these goals, there are many open problems in the field that require solutions before many scientific and practical benefits can be realized: Our methods require both conceptual and practical improvements to reveal deeper insights; we must figure out how best to apply our methods in pursuit of specific goals; and the field must grapple with socio-technical challenges that influence and are influenced by our work. This forward-facing review discusses the current frontier of mechanistic interpretability and the open problems that the field may benefit from prioritizing. This review collects the perspectives of its various authors and represents a synthesis of their views by Apollo Research on behalf of Schmidt Sciences. The perspectives presented here do not necessarily reflect the views of any individual author or the institutions with which they are affiliated.
ICLR: In-Context Learning of Representations
Park, Core Francisco, Lee, Andrew, Lubana, Ekdeep Singh, Yang, Yongyi, Okawa, Maya, Nishi, Kento, Wattenberg, Martin, Tanaka, Hidenori
Recent work has demonstrated that semantics specified by pretraining data influence how representations of different concepts are organized in a large language model (LLM). However, given the open-ended nature of LLMs, e.g., their ability to in-context learn, we can ask whether models alter these pretraining semantics to adopt alternative, context-specified ones. Specifically, if we provide in-context exemplars wherein a concept plays a different role than what the pretraining data suggests, do models reorganize their representations in accordance with these novel semantics? To answer this question, we take inspiration from the theory of conceptual role semantics and define a toy "graph tracing" task wherein the nodes of the graph are referenced via concepts seen during training (e.g., apple, bird, etc.) and the connectivity of the graph is defined via some predefined structure (e.g., a square grid). Given exemplars that indicate traces of random walks on the graph, we analyze intermediate representations of the model and find that as the amount of context is scaled, there is a sudden re-organization from pretrained semantic representations to in-context representations aligned with the graph structure. Further, we find that when reference concepts have correlations in their semantics (e.g., Monday, Tuesday, etc.), the context-specified graph structure is still present in the representations, but is unable to dominate the pretrained structure. To explain these results, we analogize our task to energy minimization for a predefined graph topology, providing evidence towards an implicit optimization process to infer context-specified semantics. Overall, our findings indicate scaling context-size can flexibly re-organize model representations, possibly unlocking novel capabilities.
Dialogue Action Tokens: Steering Language Models in Goal-Directed Dialogue with a Multi-Turn Planner
Li, Kenneth, Wang, Yiming, Viégas, Fernanda, Wattenberg, Martin
We present an approach called Dialogue Action Tokens (DAT) that adapts language model agents to plan goal-directed dialogues. The core idea is to treat each utterance as an action, thereby converting dialogues into games where existing approaches such as reinforcement learning can be applied. Specifically, we freeze a pretrained language model and train a small planner model that predicts a continuous action vector, used for controlled generation in each round. This design avoids the problem of language degradation under reward optimization. When evaluated on the Sotopia platform for social simulations, the DAT-steered LLaMA model surpasses GPT-4's performance. We also apply DAT to steer an attacker language model in a novel multi-turn red-teaming setting, revealing a potential new attack surface.
Designing a Dashboard for Transparency and Control of Conversational AI
Chen, Yida, Wu, Aoyu, DePodesta, Trevor, Yeh, Catherine, Li, Kenneth, Marin, Nicholas Castillo, Patel, Oam, Riecke, Jan, Raval, Shivam, Seow, Olivia, Wattenberg, Martin, Viégas, Fernanda
Conversational LLMs function as black box systems, leaving users guessing about why they see the output they do. This lack of transparency is potentially problematic, especially given concerns around bias and truthfulness. To address this issue, we present an end-to-end prototype-connecting interpretability techniques with user experience design-that seeks to make chatbots more transparent. We begin by showing evidence that a prominent open-source LLM has a "user model": examining the internal state of the system, we can extract data related to a user's age, gender, educational level, and socioeconomic status. Next, we describe the design of a dashboard that accompanies the chatbot interface, displaying this user model in real time. The dashboard can also be used to control the user model and the system's behavior. Finally, we discuss a study in which users conversed with the instrumented system. Our results suggest that users appreciate seeing internal states, which helped them expose biased behavior and increased their sense of control. Participants also made valuable suggestions that point to future directions for both design and machine learning research. The project page and video demo of our TalkTuner system are available at https://bit.ly/talktuner-project-page
Q-Probe: A Lightweight Approach to Reward Maximization for Language Models
Li, Kenneth, Jelassi, Samy, Zhang, Hugh, Kakade, Sham, Wattenberg, Martin, Brandfonbrener, David
We present an approach called Q-probing to adapt a pre-trained language model to maximize a task-specific reward function. At a high level, Q-probing sits between heavier approaches such as finetuning and lighter approaches such as few shot prompting, but can also be combined with either. The idea is to learn a simple linear function on a model's embedding space that can be used to reweight candidate completions. We theoretically show that this sampling procedure is equivalent to a KL-constrained maximization of the Q-probe as the number of samples increases. To train the Q-probes we consider either reward modeling or a class of novel direct policy learning objectives based on importance weighted policy gradients. With this technique, we see gains in domains with ground-truth rewards (code generation) as well as implicit rewards defined by preference data, even outperforming finetuning in data-limited regimes. Moreover, a Q-probe can be trained on top of an API since it only assumes access to sampling and embeddings. Code: https://github.com/likenneth/q_probe .
Measuring and Controlling Instruction (In)Stability in Language Model Dialogs
Li, Kenneth, Liu, Tianle, Bashkansky, Naomi, Bau, David, Viégas, Fernanda, Pfister, Hanspeter, Wattenberg, Martin
System-prompting is a standard tool for customizing language-model chatbots, enabling them to follow a specific instruction. An implicit assumption in the use of system prompts is that they will be stable, so the chatbot will continue to generate text according to the stipulated instructions for the duration of a conversation. We propose a quantitative benchmark to test this assumption, evaluating instruction stability via self-chats between two instructed chatbots. Testing popular models like LLaMA2-chat-70B and GPT-3.5, we reveal a significant instruction drift within eight rounds of conversations. An empirical and theoretical analysis of this phenomenon suggests the transformer attention mechanism plays a role, due to attention decay over long exchanges. To combat attention decay and instruction drift, we propose a lightweight method called split-softmax, which compares favorably against two strong baselines.
A Mechanistic Understanding of Alignment Algorithms: A Case Study on DPO and Toxicity
Lee, Andrew, Bai, Xiaoyan, Pres, Itamar, Wattenberg, Martin, Kummerfeld, Jonathan K., Mihalcea, Rada
While alignment algorithms are now commonly used to tune pre-trained language models towards a user's preferences, we lack explanations for the underlying mechanisms in which models become ``aligned'', thus making it difficult to explain phenomena like jailbreaks. In this work we study a popular algorithm, direct preference optimization (DPO), and the mechanisms by which it reduces toxicity. Namely, we first study how toxicity is represented and elicited in a pre-trained language model, GPT2-medium. We then apply DPO with a carefully crafted pairwise dataset to reduce toxicity. We examine how the resulting model averts toxic outputs, and find that capabilities learned from pre-training are not removed, but rather bypassed. We use this insight to demonstrate a simple method to un-align the model, reverting it back to its toxic behavior.
ChainForge: A Visual Toolkit for Prompt Engineering and LLM Hypothesis Testing
Arawjo, Ian, Swoopes, Chelse, Vaithilingam, Priyan, Wattenberg, Martin, Glassman, Elena
Evaluating outputs of large language models (LLMs) is challenging, requiring making -- and making sense of -- many responses. Yet tools that go beyond basic prompting tend to require knowledge of programming APIs, focus on narrow domains, or are closed-source. We present ChainForge, an open-source visual toolkit for prompt engineering and on-demand hypothesis testing of text generation LLMs. ChainForge provides a graphical interface for comparison of responses across models and prompt variations. Our system was designed to support three tasks: model selection, prompt template design, and hypothesis testing (e.g., auditing). We released ChainForge early in its development and iterated on its design with academics and online users. Through in-lab and interview studies, we find that a range of people could use ChainForge to investigate hypotheses that matter to them, including in real-world settings. We identify three modes of prompt engineering and LLM hypothesis testing: opportunistic exploration, limited evaluation, and iterative refinement.
Beyond Surface Statistics: Scene Representations in a Latent Diffusion Model
Chen, Yida, Viégas, Fernanda, Wattenberg, Martin
Latent diffusion models (LDMs) exhibit an impressive ability to produce realistic images, yet the inner workings of these models remain mysterious. Even when trained purely on images without explicit depth information, they typically output coherent pictures of 3D scenes. In this work, we investigate a basic interpretability question: does an LDM create and use an internal representation of simple scene geometry? Using linear probes, we find evidence that the internal activations of the LDM encode linear representations of both 3D depth data and a salient-object / background distinction. These representations appear surprisingly early in the denoising process$-$well before a human can easily make sense of the noisy images. Intervention experiments further indicate these representations play a causal role in image synthesis, and may be used for simple high-level editing of an LDM's output. Project page: https://yc015.github.io/scene-representation-diffusion-model/
AI Alignment in the Design of Interactive AI: Specification Alignment, Process Alignment, and Evaluation Support
Terry, Michael, Kulkarni, Chinmay, Wattenberg, Martin, Dixon, Lucas, Morris, Meredith Ringel
AI alignment considers the overall problem of ensuring an AI produces desired outcomes, without undesirable side effects. While often considered from the perspectives of safety and human values, AI alignment can also be considered in the context of designing and evaluating interfaces for interactive AI systems. This paper maps concepts from AI alignment onto a basic, three step interaction cycle, yielding a corresponding set of alignment objectives: 1) specification alignment: ensuring the user can efficiently and reliably communicate objectives to the AI, 2) process alignment: providing the ability to verify and optionally control the AI's execution process, and 3) evaluation support: ensuring the user can verify and understand the AI's output. We also introduce the concepts of a surrogate process, defined as a simplified, separately derived, but controllable representation of the AI's actual process; and the notion of a Process Gulf, which highlights how differences between human and AI processes can lead to challenges in AI control. To illustrate the value of this framework, we describe commercial and research systems along each of the three alignment dimensions, and show how interfaces that provide interactive alignment mechanisms can lead to qualitatively different and improved user experiences.