Goto

Collaborating Authors

 Watson, Joe


Towards Safe Robot Foundation Models

arXiv.org Artificial Intelligence

Robot foundation models hold the potential for deployment across diverse environments, from industrial applications to household tasks. While current research focuses primarily on the policies' generalization capabilities across a variety of tasks, it fails to address safety, a critical requirement for deployment on real-world systems. In this paper, we introduce a safety layer designed to constrain the action space of any generalist policy appropriately. Our approach uses ATACOM, a safe reinforcement learning algorithm that creates a safe action space and, therefore, ensures safe state transitions. By extending ATACOM to generalist policies, our method facilitates their deployment in safety-critical scenarios without requiring any specific safety fine-tuning. We demonstrate the effectiveness of this safety layer in an air hockey environment, where it prevents a puck-hitting agent from colliding with its surroundings, a failure observed in generalist policies.


Global Tensor Motion Planning

arXiv.org Artificial Intelligence

Batch planning is increasingly necessary to quickly produce diverse and high-quality motion plans for downstream learning applications, such as distillation and imitation learning. This paper presents Global Tensor Motion Planning (GTMP) -- a sampling-based motion planning algorithm comprising only tensor operations. We introduce a novel discretization structure represented as a random multipartite graph, enabling efficient vectorized sampling, collision checking, and search. We provide a theoretical investigation showing that GTMP exhibits probabilistic completeness while supporting modern GPU/TPU. Additionally, by incorporating smooth structures into the multipartite graph, GTMP directly plans smooth splines without requiring gradient-based optimization. Experiments on lidar-scanned occupancy maps and the MotionBenchMarker dataset demonstrate GTMP's computation efficiency in batch planning compared to baselines, underscoring GTMP's potential as a robust, scalable planner for diverse applications and large-scale robot learning tasks.


Coherent Soft Imitation Learning

arXiv.org Artificial Intelligence

Imitation learning methods seek to learn from an expert either through behavioral cloning (BC) of the policy or inverse reinforcement learning (IRL) of the reward. Such methods enable agents to learn complex tasks from humans that are difficult to capture with hand-designed reward functions. Choosing BC or IRL for imitation depends on the quality and state-action coverage of the demonstrations, as well as additional access to the Markov decision process. Hybrid strategies that combine BC and IRL are not common, as initial policy optimization against inaccurate rewards diminishes the benefit of pretraining the policy with BC. This work derives an imitation method that captures the strengths of both BC and IRL. In the entropy-regularized ('soft') reinforcement learning setting, we show that the behaviour-cloned policy can be used as both a shaped reward and a critic hypothesis space by inverting the regularized policy update. This coherency facilitates fine-tuning cloned policies using the reward estimate and additional interactions with the environment. This approach conveniently achieves imitation learning through initial behaviour cloning, followed by refinement via RL with online or offline data sources. The simplicity of the approach enables graceful scaling to high-dimensional and vision-based tasks, with stable learning and minimal hyperparameter tuning, in contrast to adversarial approaches. For the open-source implementation and simulation results, see https://joemwatson.github.io/csil/.


Function-Space Regularization for Deep Bayesian Classification

arXiv.org Artificial Intelligence

Bayesian deep learning approaches assume model parameters to be latent random variables and infer posterior distributions to quantify uncertainty, increase safety and trust, and prevent overconfident and unpredictable behavior. However, weight-space priors are model-specific, can be difficult to interpret and are hard to specify. Instead, we apply a Dirichlet prior in predictive space and perform approximate function-space variational inference. To this end, we interpret conventional categorical predictions from stochastic neural network classifiers as samples from an implicit Dirichlet distribution. By adapting the inference, the same function-space prior can be combined with different models without affecting model architecture or size. We illustrate the flexibility and efficacy of such a prior with toy experiments and demonstrate scalability, improved uncertainty quantification and adversarial robustness with large-scale image classification experiments.


Efficient Stochastic Optimal Control through Approximate Bayesian Input Inference

arXiv.org Artificial Intelligence

Optimal control under uncertainty is a prevailing challenge for many reasons. One of the critical difficulties lies in producing tractable solutions for the underlying stochastic optimization problem. We show how advanced approximate inference techniques can be used to handle the statistical approximations principled and practically by framing the control problem as a problem of input estimation. Analyzing the Gaussian setting, we present an inference-based solver that is effective in stochastic and deterministic settings and was found to be superior to popular baselines on nonlinear simulated tasks. We draw connections that relate this inference formulation to previous approaches for stochastic optimal control and outline several advantages that this inference view brings due to its statistical nature.


Active Inference or Control as Inference? A Unifying View

arXiv.org Machine Learning

Active inference (AI) is a persuasive theoretical framework from computational neuroscience that seeks to describe action and perception as inference-based computation. However, this framework has yet to provide practical sensorimotor control algorithms that are competitive with alternative approaches. In this work, we frame active inference through the lens of control as inference (CaI), a body of work that presents trajectory optimization as inference. From the wider view of `probabilistic numerics', CaI offers principled, numerically robust optimal control solvers that provide uncertainty quantification, and can scale to nonlinear problems with approximate inference. We show that AI may be framed as partially-observed CaI when the cost function is defined specifically in the observation states.


Stochastic Optimal Control as Approximate Input Inference

arXiv.org Machine Learning

Optimal control of stochastic nonlinear dynamical systems is a major challenge in the domain of robot learning. Given the intractability of the global control problem, state-of-the-art algorithms focus on approximate sequential optimization techniques, that heavily rely on heuristics for regularization in order to achieve stable convergence. By building upon the duality between inference and control, we develop the view of Optimal Control as Input Estimation, devising a probabilistic stochastic optimal control formulation that iteratively infers the optimal input distributions by minimizing an upper bound of the control cost. Inference is performed through Expectation Maximization and message passing on a probabilistic graphical model of the dynamical system, and time-varying linear Gaussian feedback controllers are extracted from the joint state-action distribution. This perspective incorporates uncertainty quantification, effective initialization through priors, and the principled regularization inherent to the Bayesian treatment. Moreover, it can be shown that for deterministic linearized systems, our framework derives the maximum entropy linear quadratic optimal control law. We provide a complete and detailed derivation of our probabilistic approach and highlight its advantages in comparison to other deterministic and probabilistic solvers.