Goto

Collaborating Authors

 Wanjawa, Barack Wamkaya


Algorithm for Semantic Network Generation from Texts of Low Resource Languages Such as Kiswahili

arXiv.org Artificial Intelligence

Box 30197 Nairobi 00100, Kenya eamiriti@uonbi.ac.ke Abstract Processing low-resource languages, such as Kiswahili, using machine learning is difficult due to lack of adequate training data. However, such low-resource languages are still important for human communication and are already in daily use and users need practical machine processing tasks such as summarization, disambiguation and even question answering (QA). One method of processing such languages, while bypassing the need for training data, is the use semantic networks. Some low resource languages, such as Kiswahili, are of the subject-verb-object (SVO) structure, and similarly semantic networks are a triple of subject-predicate-object, hence SVO parts of speech tags can map into a semantic network triple. An algorithm to process raw natural language text and map it into a semantic network is therefore necessary and desirable in structuring low resource languages texts. This algorithm tested on the Kiswahili QA task with upto 78.6% exact match. Highlights Languages, both low and high-resource are important for communication. Low resource languages lack vast data repositories necessary for machine learning. Use of language part of speech tags can create meaning from the language. An algorithm can create semantic networks out of the language parts of speech. The semantic network of the language can do practical tasks such as QA.


Evaluating the Performance of ANN Prediction System at Shanghai Stock Market in the Period 21-Sep-2016 to 11-Oct-2016

arXiv.org Machine Learning

This research evaluates the performance of an Artificial Neural Network based prediction system that was employed on the Shanghai Stock Exchange for the period 21-Sep-2016 to 11-Oct-2016. It is a follow-up to a previous paper in which the prices were predicted and published before September 21. Stock market price prediction remains an important quest for investors and researchers. This research used an Artificial Intelligence system, being an Artificial Neural Network that is feedforward multi-layer perceptron with error backpropagation for prediction, unlike other methods such as technical, fundamental or time series analysis. While these alternative methods tend to guide on trends and not the exact likely prices, neural networks on the other hand have the ability to predict the real value prices, as was done on this research. Nonetheless, determination of suitable network parameters remains a challenge in neural network design, with this research settling on a configuration of 5:21:21:1 with 80% training data or 4-year of training data as a good enough model for stock prediction, as already determined in a previous research by the author. The comparative results indicate that neural network can predict typical stock market prices with mean absolute percentage errors that are as low as 1.95% over the ten prediction instances that was studied in this research.