Wang, Zirui
GRUtopia: Dream General Robots in a City at Scale
Wang, Hanqing, Chen, Jiahe, Huang, Wensi, Ben, Qingwei, Wang, Tai, Mi, Boyu, Huang, Tao, Zhao, Siheng, Chen, Yilun, Yang, Sizhe, Cao, Peizhou, Yu, Wenye, Ye, Zichao, Li, Jialun, Long, Junfeng, Wang, Zirui, Wang, Huiling, Zhao, Ying, Tu, Zhongying, Qiao, Yu, Lin, Dahua, Pang, Jiangmiao
Recent works have been exploring the scaling laws in the field of Embodied AI. Given the prohibitive costs of collecting real-world data, we believe the Simulation-to-Real (Sim2Real) paradigm is a crucial step for scaling the learning of embodied models. This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots. It features several advancements: (a) The scene dataset, GRScenes, includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments. In contrast to previous works mainly focusing on home, GRScenes covers 89 diverse scene categories, bridging the gap of service-oriented environments where general robots would be initially deployed. (b) GRResidents, a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction, task generation, and task assignment, thus simulating social scenarios for embodied AI applications. (c) The benchmark, GRBench, supports various robots but focuses on legged robots as primary agents and poses moderately challenging tasks involving Object Loco-Navigation, Social Loco-Navigation, and Loco-Manipulation. We hope that this work can alleviate the scarcity of high-quality data in this field and provide a more comprehensive assessment of Embodied AI research. The project is available at https://github.com/OpenRobotLab/GRUtopia.
Understanding Alignment in Multimodal LLMs: A Comprehensive Study
Amirloo, Elmira, Fauconnier, Jean-Philippe, Roesmann, Christoph, Kerl, Christian, Boney, Rinu, Qian, Yusu, Wang, Zirui, Dehghan, Afshin, Yang, Yinfei, Gan, Zhe, Grasch, Peter
Preference alignment has become a crucial component in enhancing the performance of Large Language Models (LLMs), yet its impact in Multimodal Large Language Models (MLLMs) remains comparatively underexplored. Similar to language models, MLLMs for image understanding tasks encounter challenges like hallucination. In MLLMs, hallucination can occur not only by stating incorrect facts but also by producing responses that are inconsistent with the image content. A primary objective of alignment for MLLMs is to encourage these models to align responses more closely with image information. Recently, multiple works have introduced preference datasets for MLLMs and examined different alignment methods, including Direct Preference Optimization (DPO) and Proximal Policy Optimization (PPO). However, due to variations in datasets, base model types, and alignment methods, it remains unclear which specific elements contribute most significantly to the reported improvements in these works. In this paper, we independently analyze each aspect of preference alignment in MLLMs. We start by categorizing the alignment algorithms into two groups, offline (such as DPO), and online (such as online-DPO), and show that combining offline and online methods can improve the performance of the model in certain scenarios. We review a variety of published multimodal preference datasets and discuss how the details of their construction impact model performance. Based on these insights, we introduce a novel way of creating multimodal preference data called Bias-Driven Hallucination Sampling (BDHS) that needs neither additional annotation nor external models, and show that it can achieve competitive performance to previously published alignment work for multimodal models across a range of benchmarks.
Learning H-Infinity Locomotion Control
Long, Junfeng, Yu, Wenye, Li, Quanyi, Wang, Zirui, Lin, Dahua, Pang, Jiangmiao
Stable locomotion in precipitous environments is an essential task for quadruped robots, requiring the ability to resist various external disturbances. Recent neural policies enhance robustness against disturbances by learning to resist external forces sampled from a fixed distribution in the simulated environment. However, the force generation process doesn't consider the robot's current state, making it difficult to identify the most effective direction and magnitude that can push the robot to the most unstable but recoverable state. Thus, challenging cases in the buffer are insufficient to optimize robustness. In this paper, we propose to model the robust locomotion learning process as an adversarial interaction between the locomotion policy and a learnable disturbance that is conditioned on the robot state to generate appropriate external forces. To make the joint optimization stable, our novel $H_{\infty}$ constraint mandates the bound of the ratio between the cost and the intensity of the external forces. We verify the robustness of our approach in both simulated environments and real-world deployment, on quadrupedal locomotion tasks and a more challenging task where the quadruped performs locomotion merely on hind legs. Training and deployment code will be made public.
OmniControlNet: Dual-stage Integration for Conditional Image Generation
Wang, Yilin, Xu, Haiyang, Zhang, Xiang, Chen, Zeyuan, Sha, Zhizhou, Wang, Zirui, Tu, Zhuowen
We provide a two-way integration for the widely adopted ControlNet by integrating external condition generation algorithms into a single dense prediction method and incorporating its individually trained image generation processes into a single model. Despite its tremendous success, the ControlNet of a two-stage pipeline bears limitations in being not self-contained (e.g. calls the external condition generation algorithms) with a large model redundancy (separately trained models for different types of conditioning inputs). Our proposed OmniControlNet consolidates 1) the condition generation (e.g., HED edges, depth maps, user scribble, and animal pose) by a single multi-tasking dense prediction algorithm under the task embedding guidance and 2) the image generation process for different conditioning types under the textual embedding guidance. OmniControlNet achieves significantly reduced model complexity and redundancy while capable of producing images of comparable quality for conditioned text-to-image generation.
Are We Ready for Planetary Exploration Robots? The TAIL-Plus Dataset for SLAM in Granular Environments
Wang, Zirui, Yao, Chen, Ge, Yangtao, Shi, Guowei, Yang, Ningbo, Zhu, Zheng, Dong, Kewei, Wei, Hexiang, Jia, Zhenzhong, Wu, Jing
So far, planetary surface exploration depends on various mobile robot platforms. The autonomous navigation and decision-making of these mobile robots in complex terrains largely rely on their terrain-aware perception, localization and mapping capabilities. In this paper we release the TAIL-Plus dataset, a new challenging dataset in deformable granular environments for planetary exploration robots, which is an extension to our previous work, TAIL (Terrain-Aware multI-modaL) dataset. We conducted field experiments on beaches that are considered as planetary surface analog environments for diverse sandy terrains. In TAIL-Plus dataset, we provide more sequences with multiple loops and expand the scene from day to night. Benefit from our sensor suite with modular design, we use both wheeled and quadruped robots for data collection. The sensors include a 3D LiDAR, three downward RGB-D cameras, a pair of global-shutter color cameras that can be used as a forward-looking stereo camera, an RTK-GPS device and an extra IMU. Our datasets are intended to help researchers developing multi-sensor simultaneous localization and mapping (SLAM) algorithms for robots in unstructured, deformable granular terrains. Our datasets and supplementary materials will be available at \url{https://tailrobot.github.io/}.
MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training
McKinzie, Brandon, Gan, Zhe, Fauconnier, Jean-Philippe, Dodge, Sam, Zhang, Bowen, Dufter, Philipp, Shah, Dhruti, Du, Xianzhi, Peng, Futang, Weers, Floris, Belyi, Anton, Zhang, Haotian, Singh, Karanjeet, Kang, Doug, Jain, Ankur, Hè, Hongyu, Schwarzer, Max, Gunter, Tom, Kong, Xiang, Zhang, Aonan, Wang, Jianyu, Wang, Chong, Du, Nan, Lei, Tao, Wiseman, Sam, Yin, Guoli, Lee, Mark, Wang, Zirui, Pang, Ruoming, Grasch, Peter, Toshev, Alexander, Yang, Yinfei
In this work, we discuss building performant Multimodal Large Language Models (MLLMs). In particular, we study the importance of various architecture components and data choices. Through careful and comprehensive ablations of the image encoder, the vision language connector, and various pre-training data choices, we identified several crucial design lessons. For example, we demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data is crucial for achieving stateof-the-art (SOTA) few-shot results across multiple benchmarks, compared to other published multimodal pre-training results. Further, we show that the image encoder together with image resolution and the image token count has substantial impact, while the vision-language connector design is of comparatively negligible importance. By scaling up the presented recipe, we build MM1, a family of multimodal models, including both dense variants up to 30B and mixture-of-experts (MoE) variants up to 64B, that are SOTA in pre-training metrics and achieve competitive performance after supervised fine-tuning on a range of established multimodal benchmarks. Thanks to large-scale pre-training, MM1 enjoys appealing properties such as enhanced in-context learning, and multi-image reasoning, enabling few-shot chain-of-thought prompting.
TAIL: A Terrain-Aware Multi-Modal SLAM Dataset for Robot Locomotion in Deformable Granular Environments
Yao, Chen, Ge, Yangtao, Shi, Guowei, Wang, Zirui, Yang, Ningbo, Zhu, Zheng, Wei, Hexiang, Zhao, Yuntian, Wu, Jing, Jia, Zhenzhong
Terrain-aware perception holds the potential to improve the robustness and accuracy of autonomous robot navigation in the wilds, thereby facilitating effective off-road traversals. However, the lack of multi-modal perception across various motion patterns hinders the solutions of Simultaneous Localization And Mapping (SLAM), especially when confronting non-geometric hazards in demanding landscapes. In this paper, we first propose a Terrain-Aware multI-modaL (TAIL) dataset tailored to deformable and sandy terrains. It incorporates various types of robotic proprioception and distinct ground interactions for the unique challenges and benchmark of multi-sensor fusion SLAM. The versatile sensor suite comprises stereo frame cameras, multiple ground-pointing RGB-D cameras, a rotating 3D LiDAR, an IMU, and an RTK device. This ensemble is hardware-synchronized, well-calibrated, and self-contained. Utilizing both wheeled and quadrupedal locomotion, we efficiently collect comprehensive sequences to capture rich unstructured scenarios. It spans the spectrum of scope, terrain interactions, scene changes, ground-level properties, and dynamic robot characteristics. We benchmark several state-of-the-art SLAM methods against ground truth and provide performance validations. Corresponding challenges and limitations are also reported. All associated resources are accessible upon request at \url{https://tailrobot.github.io/}.
Improving Language Understanding from Screenshots
Gao, Tianyu, Wang, Zirui, Bhaskar, Adithya, Chen, Danqi
An emerging family of language models (LMs), capable of processing both text and images within a single visual view, has the promise to unlock complex tasks such as chart understanding and UI navigation. We refer to these models as screenshot language models. Despite their appeal, existing screenshot LMs substantially lag behind text-only models on language understanding tasks. To close this gap, we adopt a simplified setting where the model inputs are plain-text-rendered screenshots, and we focus on improving the text ability of screenshot LMs. We propose a novel Patch-and-Text Prediction (PTP) objective, which masks and recovers both image patches of screenshots and text within screenshots. We also conduct extensive ablation studies on masking rates and patch sizes, as well as designs for improving training stability. Our pre-trained model, while solely taking visual inputs, achieves comparable performance with BERT on 6 out of 8 GLUE tasks (within 2%) and improves up to 8% over prior work. Additionally, we extend PTP to train autoregressive screenshot LMs and demonstrate its effectiveness--our models can significantly reduce perplexity by utilizing the screenshot context. Together, we hope our findings can inspire future research on developing powerful screenshot LMs and extending their reach to broader applications.
Everything You Always Wanted to Know About Storage Compressibility of Pre-Trained ML Models but Were Afraid to Ask
Su, Zhaoyuan, Ahmed, Ammar, Wang, Zirui, Anwar, Ali, Cheng, Yue
As the number of pre-trained machine learning (ML) models is growing exponentially, data reduction tools are not catching up. Existing data reduction techniques are not specifically designed for pre-trained model (PTM) dataset files. This is largely due to a lack of understanding of the patterns and characteristics of these datasets, especially those relevant to data reduction and compressibility. This paper presents the first, exhaustive analysis to date of PTM datasets on storage compressibility. Our analysis spans different types of data reduction and compression techniques, from hash-based data deduplication, data similarity detection, to dictionary-coding compression. Our analysis explores these techniques at three data granularity levels, from model layers, model chunks, to model parameters. We draw new observations that indicate that modern data reduction tools are not effective when handling PTM datasets. There is a pressing need for new compression methods that take into account PTMs' data characteristics for effective storage reduction. Motivated by our findings, we design ELF, a simple yet effective, error-bounded, lossy floating-point compression method. ELF transforms floating-point parameters in such a way that the common exponent field of the transformed parameters can be completely eliminated to save storage space. We develop Elves, a compression framework that integrates ELF along with several other data reduction methods. Elves uses the most effective method to compress PTMs that exhibit different patterns. Evaluation shows that Elves achieves an overall compression ratio of $1.52\times$, which is $1.31\times$, $1.32\times$ and $1.29\times$ higher than a general-purpose compressor (zstd), an error-bounded lossy compressor (SZ3), and the uniform model quantization, respectively, with negligible model accuracy loss.
Language Models as Science Tutors
Chevalier, Alexis, Geng, Jiayi, Wettig, Alexander, Chen, Howard, Mizera, Sebastian, Annala, Toni, Aragon, Max Jameson, Fanlo, Arturo Rodríguez, Frieder, Simon, Machado, Simon, Prabhakar, Akshara, Thieu, Ellie, Wang, Jiachen T., Wang, Zirui, Wu, Xindi, Xia, Mengzhou, Jia, Wenhan, Yu, Jiatong, Zhu, Jun-Jie, Ren, Zhiyong Jason, Arora, Sanjeev, Chen, Danqi
NLP has recently made exciting progress toward training language models (LMs) with strong scientific problem-solving skills. However, model development has not focused on real-life use-cases of LMs for science, including applications in education that require processing long scientific documents. To address this, we introduce TutorEval and TutorChat. TutorEval is a diverse question-answering benchmark consisting of questions about long chapters from STEM textbooks, written by experts. TutorEval helps measure real-life usability of LMs as scientific assistants, and it is the first benchmark combining long contexts, free-form generation, and multi-disciplinary scientific knowledge. Moreover, we show that fine-tuning base models with existing dialogue datasets leads to poor performance on TutorEval. Therefore, we create TutorChat, a dataset of 80,000 long synthetic dialogues about textbooks. We use TutorChat to fine-tune Llemma models with 7B and 34B parameters. These LM tutors specialized in math have a 32K-token context window, and they excel at TutorEval while performing strongly on GSM8K and MATH. Our datasets build on open-source materials, and we release our models, data, and evaluations.