Wang, Zibo
ReLEP: A Novel Framework for Real-world Long-horizon Embodied Planning
Liu, Siyuan, Du, Jiawei, Xiang, Sicheng, Wang, Zibo, Luo, Dingsheng
Real-world long-horizon embodied planning underpins embodied AI. To accomplish long-horizon tasks, agents need to decompose abstract instructions into detailed steps. Prior works mostly rely on GPT-4V for task decomposition into predefined actions, which limits task diversity due to GPT-4V's finite understanding of larger skillsets. Therefore, we present ReLEP, a groundbreaking framework for Real world Long-horizon Embodied Planning, which can accomplish a wide range of daily tasks. At its core lies a fine-tuned large vision language model that formulates plans as sequences of skill functions according to input instruction and scene image. These functions are selected from a carefully designed skill library. ReLEP is also equipped with a Memory module for plan and status recall, and a Robot Configuration module for versatility across robot types. In addition, we propose a semi-automatic data generation pipeline to tackle dataset scarcity. Real-world off-line experiments across eight daily embodied tasks demonstrate that ReLEP is able to accomplish long-horizon embodied tasks and outperforms other state-of-the-art baseline methods.
DPBalance: Efficient and Fair Privacy Budget Scheduling for Federated Learning as a Service
Liu, Yu, Wang, Zibo, Zhu, Yifei, Chen, Chen
Federated learning (FL) has emerged as a prevalent distributed machine learning scheme that enables collaborative model training without aggregating raw data. Cloud service providers further embrace Federated Learning as a Service (FLaaS), allowing data analysts to execute their FL training pipelines over differentially-protected data. Due to the intrinsic properties of differential privacy, the enforced privacy level on data blocks can be viewed as a privacy budget that requires careful scheduling to cater to diverse training pipelines. Existing privacy budget scheduling studies prioritize either efficiency or fairness individually. In this paper, we propose DPBalance, a novel privacy budget scheduling mechanism that jointly optimizes both efficiency and fairness. We first develop a comprehensive utility function incorporating data analyst-level dominant shares and FL-specific performance metrics. A sequential allocation mechanism is then designed using the Lagrange multiplier method and effective greedy heuristics. We theoretically prove that DPBalance satisfies Pareto Efficiency, Sharing Incentive, Envy-Freeness, and Weak Strategy Proofness. We also theoretically prove the existence of a fairness-efficiency tradeoff in privacy budgeting. Extensive experiments demonstrate that DPBalance outperforms state-of-the-art solutions, achieving an average efficiency improvement of $1.44\times \sim 3.49 \times$, and an average fairness improvement of $1.37\times \sim 24.32 \times$.
Autothrottle: A Practical Bi-Level Approach to Resource Management for SLO-Targeted Microservices
Wang, Zibo, Li, Pinghe, Liang, Chieh-Jan Mike, Wu, Feng, Yan, Francis Y.
Achieving resource efficiency while preserving end-user experience is non-trivial for cloud application operators. As cloud applications progressively adopt microservices, resource managers are faced with two distinct levels of system behavior: end-to-end application latency and per-service resource usage. Translating between the two levels, however, is challenging because user requests traverse heterogeneous services that collectively (but unevenly) contribute to the end-to-end latency. We present Autothrottle, a bi-level resource management framework for microservices with latency SLOs (service-level objectives). It architecturally decouples application SLO feedback from service resource control, and bridges them through the notion of performance targets. Specifically, an application-wide learning-based controller is employed to periodically set performance targets -- expressed as CPU throttle ratios -- for per-service heuristic controllers to attain. We evaluate Autothrottle on three microservice applications, with workload traces from production scenarios. Results show superior CPU savings, up to 26.21% over the best-performing baseline and up to 93.84% over all baselines.