Wang, Zhonghao
NoisyGL: A Comprehensive Benchmark for Graph Neural Networks under Label Noise
Wang, Zhonghao, Sun, Danyu, Zhou, Sheng, Wang, Haobo, Fan, Jiapei, Huang, Longtao, Bu, Jiajun
However, their performance often hinges on high-quality node labels, which are challenging to obtain in real-world scenarios due to unreliable sources or adversarial attacks. Consequently, label noise is common in real-world graph data, negatively impacting GNNs by propagating incorrect information during training. To address this issue, the study of Graph Neural Networks under Label Noise (GLN) has recently gained traction. However, due to variations in dataset selection, data splitting, and preprocessing techniques, the community currently lacks a comprehensive benchmark, which impedes deeper understanding and further development of GLN. To fill this gap, we introduce NoisyGL in this paper, the first comprehensive benchmark for graph neural networks under label noise. NoisyGL enables fair comparisons and detailed analyses of GLN methods on noisy labeled graph data across various datasets, with unified experimental settings and interface. Our benchmark has uncovered several important insights that were missed in previous research, and we believe these findings will be highly beneficial for future studies. We hope our open-source benchmark library will foster further advancements in this field.
HiFi Tuner: High-Fidelity Subject-Driven Fine-Tuning for Diffusion Models
Wang, Zhonghao, Wei, Wei, Zhao, Yang, Xiao, Zhisheng, Hasegawa-Johnson, Mark, Shi, Humphrey, Hou, Tingbo
This paper explores advancements in high-fidelity personalized image generation through the utilization of pre-trained text-to-image diffusion models. While previous approaches have made significant strides in generating versatile scenes based on text descriptions and a few input images, challenges persist in maintaining the subject fidelity within the generated images. In this work, we introduce an innovative algorithm named HiFi Tuner to enhance the appearance preservation of objects during personalized image generation. Our proposed method employs a parameter-efficient fine-tuning framework, comprising a denoising process and a pivotal inversion process. Key enhancements include the utilization of mask guidance, a novel parameter regularization technique, and the incorporation of step-wise subject representations to elevate the sample fidelity. Additionally, we propose a reference-guided generation approach that leverages the pivotal inversion of a reference image to mitigate unwanted subject variations and artifacts. We further extend our method to a novel image editing task: substituting the subject in an image through textual manipulations. Experimental evaluations conducted on the DreamBooth dataset using the Stable Diffusion model showcase promising results. Fine-tuning solely on textual embeddings improves CLIP-T score by 3.6 points and improves DINO score by 9.6 points over Textual Inversion. When fine-tuning all parameters, HiFi Tuner improves CLIP-T score by 1.2 points and improves DINO score by 1.2 points over DreamBooth, establishing a new state of the art.
UHGEval: Benchmarking the Hallucination of Chinese Large Language Models via Unconstrained Generation
Liang, Xun, Song, Shichao, Niu, Simin, Li, Zhiyu, Xiong, Feiyu, Tang, Bo, Wy, Zhaohui, He, Dawei, Cheng, Peng, Wang, Zhonghao, Deng, Haiying
Large language models (LLMs) have emerged as pivotal contributors in contemporary natural language processing and are increasingly being applied across a diverse range of industries. However, these large-scale probabilistic statistical models cannot currently ensure the requisite quality in professional content generation. These models often produce hallucinated text, compromising their practical utility in professional contexts. To assess the authentic reliability of LLMs in text generation, numerous initiatives have developed benchmark evaluations for hallucination phenomena. Nevertheless, these benchmarks frequently utilize constrained generation techniques due to cost and temporal constraints. These techniques encompass the use of directed hallucination induction and strategies that deliberately alter authentic text to produce hallucinations. These approaches are not congruent with the unrestricted text generation demanded by real-world applications. Furthermore, a well-established Chinese-language dataset dedicated to the evaluation of hallucinations in text generation is presently lacking. Consequently, we have developed an Unconstrained Hallucination Generation Evaluation (UHGEval) benchmark, designed to compile outputs produced with minimal restrictions by LLMs. Concurrently, we have established a comprehensive benchmark evaluation framework to aid subsequent researchers in undertaking scalable and reproducible experiments. We have also executed extensive experiments, evaluating prominent Chinese language models and the GPT series models to derive professional performance insights regarding hallucination challenges.
UnLoc: A Unified Framework for Video Localization Tasks
Yan, Shen, Xiong, Xuehan, Nagrani, Arsha, Arnab, Anurag, Wang, Zhonghao, Ge, Weina, Ross, David, Schmid, Cordelia
While large-scale image-text pretrained models such as CLIP have been used for multiple video-level tasks on trimmed videos, their use for temporal localization in untrimmed videos is still a relatively unexplored task. We design a new approach for this called UnLoc, which uses pretrained image and text towers, and feeds tokens to a video-text fusion model. The output of the fusion module are then used to construct a feature pyramid in which each level connects to a head to predict a per-frame relevancy score and start/end time displacements. Unlike previous works, our architecture enables Moment Retrieval, Temporal Localization, and Action Segmentation with a single stage model, without the need for action proposals, motion based pretrained features or representation masking. Unlike specialized models, we achieve state of the art results on all three different localization tasks with a unified approach. Code will be available at: \url{https://github.com/google-research/scenic}.
MediaGPT : A Large Language Model For Chinese Media
Wang, Zhonghao, Lu, Zijia, Jin, Bo, Deng, Haiying
Large language models (LLMs) have shown remarkable capabilities in generating high-quality text and making predictions based on large amounts of data, including the media domain. However, in practical applications, the differences between the media's use cases and the general-purpose applications of LLMs have become increasingly apparent, especially Chinese. This paper examines the unique characteristics of media-domain-specific LLMs compared to general LLMs, designed a diverse set of task instruction types to cater the specific requirements of the domain and constructed unique datasets that are tailored to the media domain. Based on these, we proposed MediaGPT, a domain-specific LLM for the Chinese media domain, training by domain-specific data and experts SFT data. By performing human experts evaluation and strong model evaluation on a validation set, this paper demonstrated that MediaGPT outperforms mainstream models on various Chinese media domain tasks and verifies the importance of domain data and domain-defined prompt types for building an effective domain-specific LLM.
Feudal Reinforcement Learning by Reading Manuals
Wang, Kai, Wang, Zhonghao, Yu, Mo, Shi, Humphrey
Reading to act is a prevalent but challenging task which requires the ability to reason from a concise instruction. However, previous works face the semantic mismatch between the low-level actions and the high-level language descriptions and require the human-designed curriculum to work properly. In this paper, we present a Feudal Reinforcement Learning (FRL) model consisting of a manager agent and a worker agent. The manager agent is a multi-hop plan generator dealing with high-level abstract information and generating a series of sub-goals in a backward manner. The worker agent deals with the low-level perceptions and actions to achieve the sub-goals one by one. In comparison, our FRL model effectively alleviate the mismatching between text-level inference and low-level perceptions and actions; and is general to various forms of environments, instructions and manuals; and our multi-hop plan generator can significantly boost for challenging tasks where multi-step reasoning form the texts is critical to resolve the instructed goals. We showcase our approach achieves competitive performance on two challenging tasks, Read to Fight Monsters (RTFM) and Messenger, without human-designed curriculum learning. Recently, there are increasing interests in building reinforcement learning (RL) agents that interact with humans via natural language, such as follow natural language instructions and complete goals specified in natural language. The successes of these studies will boost the user experience in a wide range of real-world applications, such as visual language navigation (Anderson et al., 2018; Wang et al., 2019b), interactive games (Gray et al., 2019), robot control (Tellex et al., 2020), goal-oriented dialog systems and other personal assistant applications (Dhingra et al., 2017). In order to generalize to real-world use cases, the research of RL with language instructions faces various kinds of complexity. One critical demand of these use cases is that humans tend to give concise instructions, which specify the goals they hope to achieve, instead of providing complete information for the intermediate steps.
Interpretable Visual Reasoning via Induced Symbolic Space
Wang, Zhonghao, Yu, Mo, Wang, Kai, Xiong, Jinjun, Hwu, Wen-mei, Hasegawa-Johnson, Mark, Shi, Humphrey
We study the problem of concept induction in visual reasoning, i.e., identifying concepts and their hierarchical relationships from question-answer pairs associated with images; and achieve an interpretable model via working on the induced symbolic concept space. To this end, we first design a new framework named object-centric compositional attention model (OCCAM) to perform the visual reasoning task with object-level visual features. Then, we come up with a method to induce concepts of objects and relations using clues from the attention patterns between objects' visual features and question words. Finally, we achieve a higher level of interpretability by imposing OCCAM on the objects represented in the induced symbolic concept space. Experiments on the CLEVR dataset demonstrate: 1) our OCCAM achieves a new state of the art without human-annotated functional programs; 2) our induced concepts are both accurate and sufficient as OCCAM achieves an on-par performance on objects represented either in visual features or in the induced symbolic concept space.