Goto

Collaborating Authors

 Wang, Zhiyu


OASIS: Open Agent Social Interaction Simulations with One Million Agents

arXiv.org Artificial Intelligence

There has been a growing interest in enhancing rule-based agent-based models (ABMs) for social media platforms (i.e., X, Reddit) with more realistic large language model (LLM) agents, thereby allowing for a more nuanced study of complex systems. As a result, several LLM-based ABMs have been proposed in the past year. While they hold promise, each simulator is specifically designed to study a particular scenario, making it time-consuming and resource-intensive to explore other phenomena using the same ABM. Additionally, these models simulate only a limited number of agents, whereas real-world social media platforms involve millions of users. To this end, we propose OASIS, a generalizable and scalable social media simulator. OASIS is designed based on real-world social media platforms, incorporating dynamically updated environments (i.e., dynamic social networks and post information), diverse action spaces (i.e., following, commenting), and recommendation systems (i.e., interest-based and hot-score-based). Additionally, OASIS supports large-scale user simulations, capable of modeling up to one million users. With these features, OASIS can be easily extended to different social media platforms to study large-scale group phenomena and behaviors. We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms. Moreover, we provide observations of social phenomena at different agent group scales. We observe that the larger agent group scale leads to more enhanced group dynamics and more diverse and helpful agents' opinions. These findings demonstrate OASIS's potential as a powerful tool for studying complex systems in digital environments.


AttentionMixer: An Accurate and Interpretable Framework for Process Monitoring

arXiv.org Artificial Intelligence

An accurate and explainable automatic monitoring system is critical for the safety of high efficiency energy conversion plants that operate under extreme working condition. Nonetheless, currently available data-driven monitoring systems often fall short in meeting the requirements for either high-accuracy or interpretability, which hinders their application in practice. To overcome this limitation, a data-driven approach, AttentionMixer, is proposed under a generalized message passing framework, with the goal of establishing an accurate and interpretable radiation monitoring framework for energy conversion plants. To improve the model accuracy, the first technical contribution involves the development of spatial and temporal adaptive message passing blocks, which enable the capture of spatial and temporal correlations, respectively; the two blocks are cascaded through a mixing operator. To enhance the model interpretability, the second technical contribution involves the implementation of a sparse message passing regularizer, which eliminates spurious and noisy message passing routes. The effectiveness of the AttentionMixer approach is validated through extensive evaluations on a monitoring benchmark collected from the national radiation monitoring network for nuclear power plants, resulting in enhanced monitoring accuracy and interpretability in practice.


Visual Tuning

arXiv.org Artificial Intelligence

Fine-tuning visual models has been widely shown promising performance on many downstream visual tasks. With the surprising development of pre-trained visual foundation models, visual tuning jumped out of the standard modus operandi that fine-tunes the whole pre-trained model or just the fully connected layer. Instead, recent advances can achieve superior performance than full-tuning the whole pre-trained parameters by updating far fewer parameters, enabling edge devices and downstream applications to reuse the increasingly large foundation models deployed on the cloud. With the aim of helping researchers get the full picture and future directions of visual tuning, this survey characterizes a large and thoughtful selection of recent works, providing a systematic and comprehensive overview of existing work and models. Specifically, it provides a detailed background of visual tuning and categorizes recent visual tuning techniques into five groups: prompt tuning, adapter tuning, parameter tuning, and remapping tuning. Meanwhile, it offers some exciting research directions for prospective pre-training and various interactions in visual tuning.


CEntRE: A paragraph-level Chinese dataset for Relation Extraction among Enterprises

arXiv.org Artificial Intelligence

Enterprise relation extraction aims to detect pairs of enterprise entities and identify the business relations between them from unstructured or semi-structured text data, and it is crucial for several real-world applications such as risk analysis, rating research and supply chain security. However, previous work mainly focuses on getting attribute information about enterprises like personnel and corporate business, and pays little attention to enterprise relation extraction. To encourage further progress in the research, we introduce the CEntRE, a new dataset constructed from publicly available business news data with careful human annotation and intelligent data processing. Extensive experiments on CEntRE with six excellent models demonstrate the challenges of our proposed dataset.


On a hypergraph probabilistic graphical model

arXiv.org Artificial Intelligence

We propose a directed acyclic hypergraph framework for a probabilistic graphical model that we call Bayesian hypergraphs. The space of directed acyclic hypergraphs is much larger than the space of chain graphs. Hence Bayesian hypergraphs can model much finer factorizations than Bayesian networks or LWF chain graphs and provide simpler and more computationally efficient procedures for factorizations and interventions. Bayesian hypergraphs also allow a modeler to represent causal patterns of interaction such as Noisy-OR graphically (without additional annotations). We introduce global, local and pairwise Markov properties of Bayesian hypergraphs and prove under which conditions they are equivalent. We define a projection operator, called shadow, that maps Bayesian hypergraphs to chain graphs, and show that the Markov properties of a Bayesian hypergraph are equivalent to those of its corresponding chain graph. We extend the causal interpretation of LWF chain graphs to Bayesian hypergraphs and provide corresponding formulas and a graphical criterion for intervention.