Wang, Zhiruo
Retrieval as Attention: End-to-end Learning of Retrieval and Reading within a Single Transformer
Jiang, Zhengbao, Gao, Luyu, Araki, Jun, Ding, Haibo, Wang, Zhiruo, Callan, Jamie, Neubig, Graham
Systems for knowledge-intensive tasks such as open-domain question answering (QA) usually consist of two stages: efficient retrieval of relevant documents from a large corpus and detailed reading of the selected documents to generate answers. Retrievers and readers are usually modeled separately, which necessitates a cumbersome implementation and is hard to train and adapt in an end-to-end fashion. In this paper, we revisit this design and eschew the separate architecture and training in favor of a single Transformer that performs Retrieval as Attention (ReAtt), and end-to-end training solely based on supervision from the end QA task. We demonstrate for the first time that a single model trained end-to-end can achieve both competitive retrieval and QA performance, matching or slightly outperforming state-of-the-art separately trained retrievers and readers. Moreover, end-to-end adaptation significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings, making our model a simple and adaptable solution for knowledge-intensive tasks. Code and models are available at https://github.com/jzbjyb/ReAtt.
Structure-aware Pre-training for Table Understanding with Tree-based Transformers
Wang, Zhiruo, Dong, Haoyu, Jia, Ran, Li, Jia, Fu, Zhiyi, Han, Shi, Zhang, Dongmei
Tables are widely used with various structures to organize and present data. Recent attempts on table understanding mainly focus on relational tables, yet overlook to other common table structures. In this paper, we propose TUTA, a unified pre-training architecture for understanding generally structured tables. Since understanding a table needs to leverage both spatial, hierarchical, and semantic information, we adapt the self-attention strategy with several key structure-aware mechanisms. First, we propose a novel tree-based structure called a bi-dimensional coordinate tree, to describe both the spatial and hierarchical information in tables. Upon this, we extend the pre-training architecture with two core mechanisms, namely the tree-based attention and tree-based position embedding. Moreover, to capture table information in a progressive manner, we devise three pre-training objectives to enable representations at the token, cell, and table levels. TUTA pre-trains on a wide range of unlabeled tables and fine-tunes on a critical task in the field of table structure understanding, i.e. cell type classification. Experiment results show that TUTA is highly effective, achieving state-of-the-art on four well-annotated cell type classification datasets.