Wang, Zhewei
Dilated FCN: Listening Longer to Hear Better
Gong, Shuyu, Wang, Zhewei, Sun, Tao, Zhang, Yuanhang, Smith, Charles D., Xu, Li, Liu, Jundong
Deep neural network solutions have emerged as a new and powerful paradigm for speech enhancement (SE). The capabilities to capture long context and extract multi-scale patterns are crucial to design effective SE networks. Such capabilities, however, are often in conflict with the goal of maintaining compact networks to ensure good system generalization. In this paper, we explore dilation operations and apply them to fully convolutional networks (FCNs) to address this issue. Dilations equip the networks with greatly expanded receptive fields, without increasing the number of parameters. Different strategies to fuse multi-scale dilations, as well as to install the dilation modules are explored in this work. Using Noisy VCTK and AzBio sentences datasets, we demonstrate that the proposed dilation models significantly improve over the baseline FCN and outperform the state-of-the-art SE solutions.
Trace-back Along Capsules and Its Application on Semantic Segmentation
Sun, Tao, Wang, Zhewei, Smith, C. D., Liu, Jundong
In this paper, we propose a capsule-based neural network model to solve the semantic segmentation problem. By taking advantage of the extractable part-whole dependencies available in capsule layers, we derive the probabilities of the class labels for individual capsules through a recursive, layer-by-layer procedure. We model this procedure as a traceback pipeline and take it as a central piece to build an end-to-end segmentation network. Under the proposed framework, image-level class labels and object boundaries are jointly sought in an explicit manner, which poses a significant advantage over the state-of-the-art fully convolutional network (FCN) solutions. Experiments conducted on modified MNIST and neuroimages demonstrate that our model considerably enhance the segmentation performance compared to the leading FCN variant.