Wang, Zhengren
HopRAG: Multi-Hop Reasoning for Logic-Aware Retrieval-Augmented Generation
Liu, Hao, Wang, Zhengren, Chen, Xi, Li, Zhiyu, Xiong, Feiyu, Yu, Qinhan, Zhang, Wentao
Retrieval-Augmented Generation (RAG) systems often struggle with imperfect retrieval, as traditional retrievers focus on lexical or semantic similarity rather than logical relevance. To address this, we propose HopRAG, a novel RAG framework that augments retrieval with logical reasoning through graph-structured knowledge exploration. During indexing, HopRAG constructs a passage graph, with text chunks as vertices and logical connections established via LLM-generated pseudo-queries as edges. During retrieval, it employs a retrieve-reason-prune mechanism: starting with lexically or semantically similar passages, the system explores multi-hop neighbors guided by pseudo-queries and LLM reasoning to identify truly relevant ones. Extensive experiments demonstrate HopRAG's superiority, achieving 76.78\% higher answer accuracy and 65.07\% improved retrieval F1 score compared to conventional methods. The repository is available at https://github.com/LIU-Hao-2002/HopRAG.
A Comprehensive Survey on Imbalanced Data Learning
Gao, Xinyi, Xie, Dongting, Zhang, Yihang, Wang, Zhengren, He, Conghui, Yin, Hongzhi, Zhang, Wentao
With the expansion of data availability, machine learning (ML) has achieved remarkable breakthroughs in both academia and industry. However, imbalanced data distributions are prevalent in various types of raw data and severely hinder the performance of ML by biasing the decision-making processes. To deepen the understanding of imbalanced data and facilitate the related research and applications, this survey systematically analyzing various real-world data formats and concludes existing researches for different data formats into four distinct categories: data re-balancing, feature representation, training strategy, and ensemble learning. This structured analysis help researchers comprehensively understand the pervasive nature of imbalance across diverse data format, thereby paving a clearer path toward achieving specific research goals. we provide an overview of relevant open-source libraries, spotlight current challenges, and offer novel insights aimed at fostering future advancements in this critical area of study.
MRAMG-Bench: A BeyondText Benchmark for Multimodal Retrieval-Augmented Multimodal Generation
Yu, Qinhan, Xiao, Zhiyou, Li, Binghui, Wang, Zhengren, Chen, Chong, Zhang, Wentao
Recent advancements in Retrieval-Augmented Generation (RAG) have shown remarkable performance in enhancing response accuracy and relevance by integrating external knowledge into generative models. However, existing RAG methods primarily focus on providing text-only answers, even in multimodal retrieval-augmented generation scenarios. In this work, we introduce the Multimodal Retrieval-Augmented Multimodal Generation (MRAMG) task, which aims to generate answers that combine both text and images, fully leveraging the multimodal data within a corpus. Despite the importance of this task, there is a notable absence of a comprehensive benchmark to effectively evaluate MRAMG performance. To bridge this gap, we introduce the MRAMG-Bench, a carefully curated, human-annotated dataset comprising 4,346 documents, 14,190 images, and 4,800 QA pairs, sourced from three categories: Web Data, Academic Papers, and Lifestyle. The dataset incorporates diverse difficulty levels and complex multi-image scenarios, providing a robust foundation for evaluating multimodal generation tasks. To facilitate rigorous evaluation, our MRAMG-Bench incorporates a comprehensive suite of both statistical and LLM-based metrics, enabling a thorough analysis of the performance of popular generative models in the MRAMG task. Besides, we propose an efficient multimodal answer generation framework that leverages both LLMs and MLLMs to generate multimodal responses. Our datasets are available at: https://huggingface.co/MRAMG.
Document Parsing Unveiled: Techniques, Challenges, and Prospects for Structured Information Extraction
Zhang, Qintong, Huang, Victor Shea-Jay, Wang, Bin, Zhang, Junyuan, Wang, Zhengren, Liang, Hao, Wang, Shawn, Lin, Matthieu, He, Conghui, Zhang, Wentao
Document parsing is essential for converting unstructured and semi-structured documents--such as contracts, academic papers, and invoices--into structured, machine-readable data. Document parsing extract reliable structured data from unstructured inputs, providing huge convenience for numerous applications. Especially with recent achievements in Large Language Models, document parsing plays an indispensable role in both knowledge base construction and training data generation. This survey presents a comprehensive review of the current state of document parsing, covering key methodologies, from modular pipeline systems to end-to-end models driven by large vision-language models. Core components such as layout detection, content extraction (including text, tables, and mathematical expressions), and multi-modal data integration are examined in detail. Additionally, this paper discusses the challenges faced by modular document parsing systems and vision-language models in handling complex layouts, integrating multiple modules, and recognizing high-density text. It emphasizes the importance of developing larger and more diverse datasets and outlines future research directions.
QAEncoder: Towards Aligned Representation Learning in Question Answering System
Wang, Zhengren, Yu, Qinhan, Wei, Shida, Li, Zhiyu, Xiong, Feiyu, Wang, Xiaoxing, Niu, Simin, Liang, Hao, Zhang, Wentao
Modern QA systems entail retrieval-augmented generation (RAG) for accurate and trustworthy responses. However, the inherent gap between user queries and relevant documents hinders precise matching. Motivated by our conical distribution hypothesis, which posits that potential queries and documents form a cone-like structure in the embedding space, we introduce QAEncoder, a training-free approach to bridge this gap. Specifically, QAEncoder estimates the expectation of potential queries in the embedding space as a robust surrogate for the document embedding, and attaches document fingerprints to effectively distinguish these embeddings. Extensive experiments on fourteen embedding models across six languages and eight datasets validate QAEncoder's alignment capability, which offers a plug-and-play solution that seamlessly integrates with existing RAG architectures and training-based methods.
Fast Maximum $k$-Plex Algorithms Parameterized by Small Degeneracy Gaps
Wang, Zhengren, Zhou, Yi, Luo, Chunyu, Xiao, Mingyu, Hao, Jin-Kao
Given a graph, a $k$-plex is a set of vertices in which each vertex is not adjacent to at most $k-1$ other vertices in the set. The maximum $k$-plex problem, which asks for the largest $k$-plex from the given graph, is an important but computationally challenging problem in applications such as graph mining and community detection. So far, there are many practical algorithms, but without providing theoretical explanations on their efficiency. We define a novel parameter of the input instance, $g_k(G)$, the gap between the degeneracy bound and the size of the maximum $k$-plex in the given graph, and present an exact algorithm parameterized by this $g_k(G)$, which has a worst-case running time polynomial in the size of the input graph and exponential in $g_k(G)$. In real-world inputs, $g_k(G)$ is very small, usually bounded by $O(\log{(|V|)})$, indicating that the algorithm runs in polynomial time. We further extend our discussion to an even smaller parameter $cg_k(G)$, the gap between the community-degeneracy bound and the size of the maximum $k$-plex, and show that without much modification, our algorithm can also be parameterized by $cg_k(G)$. To verify the empirical performance of these algorithms, we carry out extensive experiments to show that these algorithms are competitive with the state-of-the-art algorithms. In particular, for large $k$ values such as $15$ and $20$, our algorithms dominate the existing algorithms. Finally, empirical analysis is performed to illustrate the effectiveness of the parameters and other key components in the implementation.