Wang, Zezhong
FReM: A Flexible Reasoning Mechanism for Balancing Quick and Slow Thinking in Long-Context Question Answering
Zhao, Zhengyi, Zhang, Shubo, Wang, Zezhong, Liang, Bin, Li, Binyang, Wong, Kam-Fai
Long-context question-answering (LCQA) systems have greatly benefited from the powerful reasoning capabilities of large language models (LLMs), which can be categorized into slow and quick reasoning modes. However, both modes have their limitations. Slow thinking generally leans to explore every possible reasoning path, which leads to heavy overthinking and wastes time. Quick thinking usually relies on pattern matching rather than truly understanding the query logic, which misses proper understanding. To address these issues, we propose FReM: Flexible Reasoning Mechanism, a method that adjusts reasoning depth according to the complexity of each question. Specifically, FReM leverages synthetic reference QA examples to provide an explicit chain of thought, enabling efficient handling of simple queries while allowing deeper reasoning for more complex ones. By doing so, FReM helps quick-thinking models move beyond superficial pattern matching and narrows the reasoning space for slow-thinking models to avoid unnecessary exploration. Experiments on seven QA datasets show that FReM improves reasoning accuracy and scalability, particularly for complex multihop questions, indicating its potential to advance LCQA methodologies.
ToolFlow: Boosting LLM Tool-Calling Through Natural and Coherent Dialogue Synthesis
Wang, Zezhong, Zeng, Xingshan, Liu, Weiwen, Li, Liangyou, Wang, Yasheng, Shang, Lifeng, Jiang, Xin, Liu, Qun, Wong, Kam-Fai
Supervised fine-tuning (SFT) is a common method to enhance the tool calling capabilities of Large Language Models (LLMs), with the training data often being synthesized. The current data synthesis process generally involves sampling a set of tools, formulating a requirement based on these tools, and generating the call statements. However, tools sampled randomly lack relevance, making them difficult to combine and thus reducing the diversity of the data. Additionally, current work overlooks the coherence between turns of dialogues, leading to a gap between the synthesized data and real-world scenarios. To address these issues, we propose a Graph-based Sampling strategy to sample more relevant tool combinations, and a Planned-generation strategy to create plans that guide the synthesis of coherent dialogues. We integrate these two strategies and enable multiple agents to synthesize the dialogue data interactively, resulting in our tool-calling data synthesis pipeline ToolFlow. Data quality assessments demonstrate improvements in the naturalness and coherence of our synthesized dialogues. Finally, we apply SFT on LLaMA-3.1-8B using 8,000 synthetic dialogues generated with ToolFlow. Results show that the model achieves tool-calling performance comparable to or even surpassing GPT-4, while maintaining strong general capabilities.
MlingConf: A Comprehensive Study of Multilingual Confidence Estimation on Large Language Models
Xue, Boyang, Wang, Hongru, Wang, Rui, Wang, Sheng, Wang, Zezhong, Du, Yiming, Liang, Bin, Wong, Kam-Fai
The tendency of Large Language Models (LLMs) to generate hallucinations raises concerns regarding their reliability. Therefore, confidence estimations indicating the extent of trustworthiness of the generations become essential. However, current LLM confidence estimations in languages other than English remain underexplored. This paper addresses this gap by introducing a comprehensive investigation of Multilingual Confidence estimation (MlingConf) on LLMs, focusing on both language-agnostic (LA) and language-specific (LS) tasks to explore the performance and language dominance effects of multilingual confidence estimations on different tasks. The benchmark comprises four meticulously checked and human-evaluate high-quality multilingual datasets for LA tasks and one for the LS task tailored to specific social, cultural, and geographical contexts of a language. Our experiments reveal that on LA tasks English exhibits notable linguistic dominance in confidence estimations than other languages, while on LS tasks, using question-related language to prompt LLMs demonstrates better linguistic dominance in multilingual confidence estimations. The phenomena inspire a simple yet effective native-tone prompting strategy by employing language-specific prompts for LS tasks, effectively improving LLMs' reliability and accuracy on LS tasks.
ToolACE: Winning the Points of LLM Function Calling
Liu, Weiwen, Huang, Xu, Zeng, Xingshan, Hao, Xinlong, Yu, Shuai, Li, Dexun, Wang, Shuai, Gan, Weinan, Liu, Zhengying, Yu, Yuanqing, Wang, Zezhong, Wang, Yuxian, Ning, Wu, Hou, Yutai, Wang, Bin, Wu, Chuhan, Wang, Xinzhi, Liu, Yong, Wang, Yasheng, Tang, Duyu, Tu, Dandan, Shang, Lifeng, Jiang, Xin, Tang, Ruiming, Lian, Defu, Liu, Qun, Chen, Enhong
Function calling significantly extends the application boundary of large language models, where high-quality and diverse training data is critical for unlocking this capability. However, real function-calling data is quite challenging to collect and annotate, while synthetic data generated by existing pipelines tends to lack coverage and accuracy. In this paper, we present ToolACE, an automatic agentic pipeline designed to generate accurate, complex, and diverse tool-learning data. ToolACE leverages a novel self-evolution synthesis process to curate a comprehensive API pool of 26,507 diverse APIs. Dialogs are further generated through the interplay among multiple agents, guided by a formalized thinking process. To ensure data accuracy, we implement a dual-layer verification system combining rule-based and model-based checks. We demonstrate that models trained on our synthesized data, even with only 8B parameters, achieve state-of-the-art performance on the Berkeley Function-Calling Leaderboard, rivaling the latest GPT-4 models. Our model and a subset of the data are publicly available at https://huggingface.co/Team-ACE.
Gen4DS: Workshop on Data Storytelling in an Era of Generative AI
Lan, Xingyu, Yang, Leni, Wang, Zezhong, Wang, Yun, Shi, Danqing, Carpendale, Sheelagh
Storytelling is an ancient and precious human ability that has been rejuvenated in the digital age. Over the last decade, there has been a notable surge in the recognition and application of data storytelling, both in academia and industry. Recently, the rapid development of generative AI has brought new opportunities and challenges to this field, sparking numerous new questions. These questions may not necessarily be quickly transformed into papers, but we believe it is necessary to promptly discuss them to help the community better clarify important issues and research agendas for the future. We thus invite you to join our workshop (Gen4DS) to discuss questions such as: How can generative AI facilitate the creation of data stories? How might generative AI alter the workflow of data storytellers? What are the pitfalls and risks of incorporating AI in storytelling? We have designed both paper presentations and interactive activities (including hands-on creation, group discussion pods, and debates on controversial issues) for the workshop. We hope that participants will learn about the latest advances and pioneering work in data storytelling, engage in critical conversations with each other, and have an enjoyable, unforgettable, and meaningful experience at the event.
PerLTQA: A Personal Long-Term Memory Dataset for Memory Classification, Retrieval, and Synthesis in Question Answering
Du, Yiming, Wang, Hongru, Zhao, Zhengyi, Liang, Bin, Wang, Baojun, Zhong, Wanjun, Wang, Zezhong, Wong, Kam-Fai
Long-term memory plays a critical role in personal interaction, considering long-term memory can better leverage world knowledge, historical information, and preferences in dialogues. Our research introduces PerLTQA, an innovative QA dataset that combines semantic and episodic memories, including world knowledge, profiles, social relationships, events, and dialogues. This dataset is collected to investigate the use of personalized memories, focusing on social interactions and events in the QA task. PerLTQA features two types of memory and a comprehensive benchmark of 8,593 questions for 30 characters, facilitating the exploration and application of personalized memories in Large Language Models (LLMs). Based on PerLTQA, we propose a novel framework for memory integration and generation, consisting of three main components: Memory Classification, Memory Retrieval, and Memory Synthesis. We evaluate this framework using five LLMs and three retrievers. Experimental results demonstrate that BERT-based classification models significantly outperform LLMs such as ChatGLM3 and ChatGPT in the memory classification task. Furthermore, our study highlights the importance of effective memory integration in the QA task.
UniMS-RAG: A Unified Multi-source Retrieval-Augmented Generation for Personalized Dialogue Systems
Wang, Hongru, Huang, Wenyu, Deng, Yang, Wang, Rui, Wang, Zezhong, Wang, Yufei, Mi, Fei, Pan, Jeff Z., Wong, Kam-Fai
Large Language Models (LLMs) has shown exceptional capabilities in many natual language understanding and generation tasks. However, the personalization issue still remains a much-coveted property, especially when it comes to the multiple sources involved in the dialogue system. To better plan and incorporate the use of multiple sources in generating personalized response, we firstly decompose it into three sub-tasks: Knowledge Source Selection, Knowledge Retrieval, and Response Generation. We then propose a novel Unified Multi-Source Retrieval-Augmented Generation system (UniMS-RAG) Specifically, we unify these three sub-tasks with different formulations into the same sequence-to-sequence paradigm during the training, to adaptively retrieve evidences and evaluate the relevance on-demand using special tokens, called acting tokens and evaluation tokens. Enabling language models to generate acting tokens facilitates interaction with various knowledge sources, allowing them to adapt their behavior to diverse task requirements. Meanwhile, evaluation tokens gauge the relevance score between the dialogue context and the retrieved evidence. In addition, we carefully design a self-refinement mechanism to iteratively refine the generated response considering 1) the consistency scores between the generated response and retrieved evidence; and 2) the relevance scores. Experiments on two personalized datasets (DuLeMon and KBP) show that UniMS-RAG achieves state-of-the-art performance on the knowledge source selection and response generation task with itself as a retriever in a unified manner. Extensive analyses and discussions are provided for shedding some new perspectives for personalized dialogue systems.
Self-Guard: Empower the LLM to Safeguard Itself
Wang, Zezhong, Yang, Fangkai, Wang, Lu, Zhao, Pu, Wang, Hongru, Chen, Liang, Lin, Qingwei, Wong, Kam-Fai
The jailbreak attack can bypass the safety measures of a Large Language Model (LLM), generating harmful content. This misuse of LLM has led to negative societal consequences. Currently, there are two main approaches to address jailbreak attacks: safety training and safeguards. Safety training focuses on further training LLM to enhance its safety. On the other hand, safeguards involve implementing external models or filters to prevent harmful outputs. However, safety training has constraints in its ability to adapt to new attack types and often leads to a drop in model performance. Safeguards have proven to be of limited help. To tackle these issues, we propose a novel approach called Self-Guard, which combines the strengths of both safety methods. Self-Guard includes two stages. In the first stage, we enhance the model's ability to assess harmful content, and in the second stage, we instruct the model to consistently perform harmful content detection on its own responses. The experiment has demonstrated that Self-Guard is robust against jailbreak attacks. In the bad case analysis, we find that LLM occasionally provides harmless responses to harmful queries. Additionally, we evaluated the general capabilities of the LLM before and after safety training, providing evidence that Self-Guard does not result in the LLM's performance degradation. In sensitivity tests, Self-Guard not only avoids inducing over-sensitivity in LLM but also can even mitigate this issue.
Empower Large Language Model to Perform Better on Industrial Domain-Specific Question Answering
Yang, Fangkai, Zhao, Pu, Wang, Zezhong, Wang, Lu, Zhang, Jue, Garg, Mohit, Lin, Qingwei, Rajmohan, Saravan, Zhang, Dongmei
Large Language Model (LLM) has gained popularity and achieved remarkable results in open-domain tasks, but its performance in real industrial domain-specific scenarios is average due to its lack of specific domain knowledge. This issue has attracted widespread attention, but there are few relevant benchmarks available. In this paper, we provide a benchmark Question Answering (QA) dataset named MSQA, centered around Microsoft products and IT technical problems encountered by customers. This dataset contains industry cloud-specific QA knowledge, an area not extensively covered in general LLMs, making it well-suited for evaluating methods aiming to enhance LLMs' domain-specific capabilities. In addition, we propose a new model interaction paradigm that can empower LLM to achieve better performance on domain-specific tasks where it is not proficient. Extensive experiments demonstrate that the approach following our method outperforms the commonly used LLM with retrieval methods. We make our source code and sample data available at: https://aka.ms/Microsoft_QA.
Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue Questions with LLMs
Wang, Hongru, Wang, Rui, Mi, Fei, Deng, Yang, Wang, Zezhong, Liang, Bin, Xu, Ruifeng, Wong, Kam-Fai
Large Language Models (LLMs), such as \texttt{ChatGPT}, greatly empower dialogue systems with strong language understanding and generation capabilities. However, most of the previous works prompt the LLMs to directly generate a response based on the dialogue context, overlooking the underlying linguistic cues about the user status exhibited in the context. Such in-depth dialogue scenarios are challenging for existing LLMs to figure out the user's hidden needs and respond satisfactorily through a single-step inference. To this end, we propose a novel linguistic cue-based chain-of-thoughts (\textit{Cue}-CoT), which enhances the LLMs inference with an intermediate reasoning step to find cues exhibited in the dialogue, aiming to provide a more personalized and engaging response. To evaluate the approach, we build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English, targeting 3 major linguistic cues during the conversation: \textit{personality}, \textit{emotion}, and \textit{psychology}. We conduct extensive experiments on the proposed benchmark with 5 LLMs under both zero-shot and one-shot settings. Empirical results demonstrate our proposed \textit{Cue}-CoT method outperforms standard prompting methods in terms of both \textit{helpfulness} and \textit{acceptability} on all datasets.