Wang, Zeyuan
InstructBioMol: Advancing Biomolecule Understanding and Design Following Human Instructions
Zhuang, Xiang, Ding, Keyan, Lyu, Tianwen, Jiang, Yinuo, Li, Xiaotong, Xiang, Zhuoyi, Wang, Zeyuan, Qin, Ming, Feng, Kehua, Wang, Jike, Zhang, Qiang, Chen, Huajun
Understanding and designing biomolecules, such as proteins and small molecules, is central to advancing drug discovery, synthetic biology, and enzyme engineering. Recent breakthroughs in Artificial Intelligence (AI) have revolutionized biomolecular research, achieving remarkable accuracy in biomolecular prediction and design. However, a critical gap remains between AI's computational power and researchers' intuition, using natural language to align molecular complexity with human intentions. Large Language Models (LLMs) have shown potential to interpret human intentions, yet their application to biomolecular research remains nascent due to challenges including specialized knowledge requirements, multimodal data integration, and semantic alignment between natural language and biomolecules. To address these limitations, we present InstructBioMol, a novel LLM designed to bridge natural language and biomolecules through a comprehensive any-to-any alignment of natural language, molecules, and proteins. This model can integrate multimodal biomolecules as input, and enable researchers to articulate design goals in natural language, providing biomolecular outputs that meet precise biological needs. Experimental results demonstrate InstructBioMol can understand and design biomolecules following human instructions. Notably, it can generate drug molecules with a 10% improvement in binding affinity and design enzymes that achieve an ESP Score of 70.4, making it the only method to surpass the enzyme-substrate interaction threshold of 60.0 recommended by the ESP developer. This highlights its potential to transform real-world biomolecular research.
COMBO: Compositional World Models for Embodied Multi-Agent Cooperation
Zhang, Hongxin, Wang, Zeyuan, Lyu, Qiushi, Zhang, Zheyuan, Chen, Sunli, Shu, Tianmin, Du, Yilun, Gan, Chuang
In this paper, we investigate the problem of embodied multi-agent cooperation, where decentralized agents must cooperate given only partial egocentric views of the world. To effectively plan in this setting, in contrast to learning world dynamics in a single-agent scenario, we must simulate world dynamics conditioned on an arbitrary number of agents' actions given only partial egocentric visual observations of the world. To address this issue of partial observability, we first train generative models to estimate the overall world state given partial egocentric observations. To enable accurate simulation of multiple sets of actions on this world state, we then propose to learn a compositional world model for multi-agent cooperation by factorizing the naturally composable joint actions of multiple agents and compositionally generating the video. By leveraging this compositional world model, in combination with Vision Language Models to infer the actions of other agents, we can use a tree search procedure to integrate these modules and facilitate online cooperative planning. To evaluate the efficacy of our methods, we create two challenging embodied multi-agent long-horizon cooperation tasks using the ThreeDWorld simulator and conduct experiments with 2-4 agents. The results show our compositional world model is effective and the framework enables the embodied agents to cooperate efficiently with different agents across various tasks and an arbitrary number of agents, showing the promising future of our proposed framework. More videos can be found at https://vis-www.cs.umass.edu/combo/.
Scientific Large Language Models: A Survey on Biological & Chemical Domains
Zhang, Qiang, Ding, Keyang, Lyv, Tianwen, Wang, Xinda, Yin, Qingyu, Zhang, Yiwen, Yu, Jing, Wang, Yuhao, Li, Xiaotong, Xiang, Zhuoyi, Zhuang, Xiang, Wang, Zeyuan, Qin, Ming, Zhang, Mengyao, Zhang, Jinlu, Cui, Jiyu, Xu, Renjun, Chen, Hongyang, Fan, Xiaohui, Xing, Huabin, Chen, Huajun
Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension, representing a significant stride toward artificial general intelligence. The application of LLMs extends beyond conventional linguistic boundaries, encompassing specialized linguistic systems developed within various scientific disciplines. This growing interest has led to the advent of scientific LLMs, a novel subclass specifically engineered for facilitating scientific discovery. As a burgeoning area in the community of AI for Science, scientific LLMs warrant comprehensive exploration. However, a systematic and up-to-date survey introducing them is currently lacking. In this paper, we endeavor to methodically delineate the concept of "scientific language", whilst providing a thorough review of the latest advancements in scientific LLMs. Given the expansive realm of scientific disciplines, our analysis adopts a focused lens, concentrating on the biological and chemical domains. This includes an in-depth examination of LLMs for textual knowledge, small molecules, macromolecular proteins, genomic sequences, and their combinations, analyzing them in terms of model architectures, capabilities, datasets, and evaluation. Finally, we critically examine the prevailing challenges and point out promising research directions along with the advances of LLMs. By offering a comprehensive overview of technical developments in this field, this survey aspires to be an invaluable resource for researchers navigating the intricate landscape of scientific LLMs.
InstructProtein: Aligning Human and Protein Language via Knowledge Instruction
Wang, Zeyuan, Zhang, Qiang, Ding, Keyan, Qin, Ming, Zhuang, Xiang, Li, Xiaotong, Chen, Huajun
Large Language Models (LLMs) have revolutionized the field of natural language processing, but they fall short in comprehending biological sequences such as proteins. To address this challenge, we propose InstructProtein, an innovative LLM that possesses bidirectional generation capabilities in both human and protein languages: (i) taking a protein sequence as input to predict its textual function description and (ii) using natural language to prompt protein sequence generation. To achieve this, we first pre-train an LLM on both protein and natural language corpora, enabling it to comprehend individual languages. Then supervised instruction tuning is employed to facilitate the alignment of these two distinct languages. Herein, we introduce a knowledge graph-based instruction generation framework to construct a high-quality instruction dataset, addressing annotation imbalance and instruction deficits in existing protein-text corpus. In particular, the instructions inherit the structural relations between proteins and function annotations in knowledge graphs, which empowers our model to engage in the causal modeling of protein functions, akin to the chain-of-thought processes in natural languages. Extensive experiments on bidirectional protein-text generation tasks show that InstructProtein outperforms state-of-the-art LLMs by large margins. Moreover, InstructProtein serves as a pioneering step towards text-based protein function prediction and sequence design, effectively bridging the gap between protein and human language understanding.
Prompt-Guided Injection of Conformation to Pre-trained Protein Model
Zhang, Qiang, Wang, Zeyuan, Han, Yuqiang, Yu, Haoran, Jin, Xurui, Chen, Huajun
Pre-trained protein models (PTPMs) represent a protein with one fixed embedding and thus are not capable for diverse tasks. For example, protein structures can shift, namely protein folding, between several conformations in various biological processes. To enable PTPMs to produce task-aware representations, we propose to learn interpretable, pluggable and extensible protein prompts as a way of injecting task-related knowledge into PTPMs. In this regard, prior PTPM optimization with the masked language modeling task can be interpreted as learning a sequence prompt (Seq prompt) that enables PTPMs to capture the sequential dependency between amino acids. To incorporate conformational knowledge to PTPMs, we propose an interaction-conformation prompt (IC prompt) that is learned through back-propagation with the protein-protein interaction task. As an instantiation, we present a conformation-aware pre-trained protein model that learns both sequence and interaction-conformation prompts in a multi-task setting. We conduct comprehensive experiments on nine protein datasets. Results confirm our expectation that using the sequence prompt does not hurt PTPMs' performance on sequence-related tasks while incorporating the interaction-conformation prompt significantly improves PTPMs' performance on tasks where conformational knowledge counts. We also show the learned prompts can be combined and extended to deal with new complex tasks.
AMI-Net+: A Novel Multi-Instance Neural Network for Medical Diagnosis from Incomplete and Imbalanced Data
Wang, Zeyuan, Poon, Josiah, Poon, Simon
In medical real-world study (RWS), how to fully utilize the fragmentary and scarce information in model training to generate the solid diagnosis results is a challenging task. In this work, we introduce a novel multi-instance neural network, AMI-Net+, to train and predict from the incomplete and extremely imbalanced data. It is more effective than the state-of-art method, AMI-Net. First, we also implement embedding, multi-head attention and gated attention-based multi-instance pooling to capture the relations of symptoms themselves and with the given disease. Besides, we propose var-ious improvements to AMI-Net, that the cross-entropy loss is replaced by focal loss and we propose a novel self-adaptive multi-instance pooling method on instance-level to obtain the bag representation. We validate the performance of AMI-Net+ on two real-world datasets, from two different medical domains. Results show that our approach outperforms other base-line models by a considerable margin.
CNN based Multi-Instance Multi-Task Learning for Syndrome Differentiation of Diabetic Patients
Wang, Zeyuan, Poon, Josiah, Sun, Shiding, Poon, Simon
Syndrome differentiation in Traditional Chinese Medicine (TCM) is the process of understanding and reasoning body condition, which is the essential step and premise of effective treatments. However, due to its complexity and lack of standardization, it is challenging to achieve. In this study, we consider each patient's record as a one-dimensional image and symptoms as pixels, in which missing and negative values are represented by zero pixels. The objective is to find relevant symptoms first and then map them to proper syndromes, that is similar to the object detection problem in computer vision. Inspired from it, we employ multi-instance multi-task learning combined with the convolutional neural network (MIMT-CNN) for syndrome differentiation, which takes region proposals as input and output image labels directly. The neural network consists of region proposals generation, convolutional layer, fully connected layer, and max pooling (multi-instance pooling) layer followed by the sigmoid function in each syndrome prediction task for image representation learning and final results generation. On the diabetes dataset, it performs better than all other baseline methods. Moreover, it shows stability and reliability to generate results, even on the dataset with small sample size, a large number of missing values and noises.