Goto

Collaborating Authors

 Wang, Zeya


Deep Clustering Evaluation: How to Validate Internal Clustering Validation Measures

arXiv.org Machine Learning

Deep clustering, a method for partitioning complex, high-dimensional data using deep neural networks, presents unique evaluation challenges. Traditional clustering validation measures, designed for low-dimensional spaces, are problematic for deep clustering, which involves projecting data into lower-dimensional embeddings before partitioning. Two key issues are identified: 1) the curse of dimensionality when applying these measures to raw data, and 2) the unreliable comparison of clustering results across different embedding spaces stemming from variations in training procedures and parameter settings in different clustering models. This paper addresses these challenges in evaluating clustering quality in deep learning. We present a theoretical framework to highlight ineffectiveness arising from using internal validation measures on raw and embedded data and propose a systematic approach to applying clustering validity indices in deep clustering contexts. Experiments show that this framework aligns better with external validation measures, effectively reducing the misguidance from the improper use of clustering validity indices in deep learning.


Adversarial Domain Adaptation Being Aware of Class Relationships

arXiv.org Machine Learning

Adversarial training is a useful approach to promote the learning of transferable representations across the source and target domains, which has been widely applied for domain adaptation (DA) tasks based on deep neural networks. Until very recently, existing adversarial domain adaptation (ADA) methods ignore the useful information from the label space, which is an important factor accountable for the complicated data distributions associated with different semantic classes. Especially, the inter-class semantic relationships have been rarely considered and discussed in the current work of transfer learning. In this paper, we propose a novel relationship-aware adversarial domain adaptation (RADA) algorithm, which first utilizes a single multi-class domain discriminator to enforce the learning of inter-class dependency structure during domain-adversarial training and then aligns this structure with the inter-class dependencies that are characterized from training the label predictor on the source domain. Specifically, we impose a regularization term to penalize the structure discrepancy between the inter-class dependencies respectively estimated from domain discriminator and label predictor. Through this alignment, our proposed method makes the ADA aware of class relationships. Empirical studies show that the incorporation of class relationships significantly improves the performance on benchmark datasets.


Reinforced Auto-Zoom Net: Towards Accurate and Fast Breast Cancer Segmentation in Whole-slide Images

arXiv.org Artificial Intelligence

Convolutional neural networks have led to significant breakthroughs in the domain of medical image analysis. However, the task of breast cancer segmentation in whole-slide images (WSIs) is still underexplored. WSIs are large histopathological images with extremely high resolution. Constrained by the hardware and field of view, using high-magnification patches can slow down the inference process and using low-magnification patches can cause the loss of information. In this paper, we aim to achieve two seemingly conflicting goals for breast cancer segmentation: accurate and fast prediction. We propose a simple yet efficient framework Reinforced Auto-Zoom Net (RAZN) to tackle this task. Motivated by the zoom-in operation of a pathologist using a digital microscope, RAZN learns a policy network to decide whether zooming is required in a given region of interest. Because the zoom-in action is selective, RAZN is robust to unbalanced and noisy ground truth labels and can efficiently reduce overfitting. We evaluate our method on a public breast cancer dataset. RAZN outperforms both single-scale and multi-scale baseline approaches, achieving better accuracy at low inference cost.