Goto

Collaborating Authors

 Wang, Yuran


DualToken: Towards Unifying Visual Understanding and Generation with Dual Visual Vocabularies

arXiv.org Artificial Intelligence

The differing representation spaces required for visual understanding and generation pose a challenge in unifying them within the autoregressive paradigm of large language models. A vision tokenizer trained for reconstruction excels at capturing low-level perceptual details, making it well-suited for visual generation but lacking high-level semantic representations for understanding tasks. Conversely, a vision encoder trained via contrastive learning aligns well with language but struggles to decode back into the pixel space for generation tasks. To bridge this gap, we propose DualToken, a method that unifies representations for both understanding and generation within a single tokenizer. However, directly integrating reconstruction and semantic objectives in a single tokenizer creates conflicts, leading to degraded performance in both reconstruction quality and semantic performance. Instead of forcing a single codebook to handle both semantic and perceptual information, DualToken disentangles them by introducing separate codebooks for high and low-level features, effectively transforming their inherent conflict into a synergistic relationship. As a result, DualToken achieves state-of-the-art performance in both reconstruction and semantic tasks while demonstrating remarkable effectiveness in downstream MLLM understanding and generation tasks. Notably, we also show that DualToken, as a unified tokenizer, surpasses the naive combination of two distinct types vision encoders, providing superior performance within a unified MLLM.


GarmentPile: Point-Level Visual Affordance Guided Retrieval and Adaptation for Cluttered Garments Manipulation

arXiv.org Artificial Intelligence

Cluttered garments manipulation poses significant challenges due to the complex, deformable nature of garments and intricate garment relations. Unlike single-garment manipulation, cluttered scenarios require managing complex garment entanglements and interactions, while maintaining garment cleanliness and manipulation stability. To address these demands, we propose to learn point-level affordance, the dense representation modeling the complex space and multi-modal manipulation candidates, while being aware of garment geometry, structure, and inter-object relations. Additionally, as it is difficult to directly retrieve a garment in some extremely entangled clutters, we introduce an adaptation module, guided by learned affordance, to reorganize highly-entangled garments into states plausible for manipulation. Our framework demonstrates effectiveness over environments featuring diverse garment types and pile configurations in both simulation and the real world. Project page: https://garmentpile.github.io/.


Baichuan-Omni-1.5 Technical Report

arXiv.org Artificial Intelligence

We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.


ProMQA: Question Answering Dataset for Multimodal Procedural Activity Understanding

arXiv.org Artificial Intelligence

Multimodal systems have great potential to assist humans in procedural activities, where people follow instructions to achieve their goals. Despite diverse application scenarios, systems are typically evaluated on traditional classification tasks, e.g., action recognition or temporal action segmentation. In this paper, we present a novel evaluation dataset, ProMQA, to measure system advancements in application-oriented scenarios. ProMQA consists of 401 multimodal procedural QA pairs on user recording of procedural activities coupled with their corresponding instruction. For QA annotation, we take a cost-effective human-LLM collaborative approach, where the existing annotation is augmented with LLM-generated QA pairs that are later verified by humans. We then provide the benchmark results to set the baseline performance on ProMQA. Our experiment reveals a significant gap between human performance and that of current systems, including competitive proprietary multimodal models. We hope our dataset sheds light on new aspects of models' multimodal understanding capabilities.


Have the VLMs Lost Confidence? A Study of Sycophancy in VLMs

arXiv.org Artificial Intelligence

In the study of LLMs, sycophancy represents a prevalent hallucination that poses significant challenges to these models. Specifically, LLMs often fail to adhere to original correct responses, instead blindly agreeing with users' opinions, even when those opinions are incorrect or malicious. However, research on sycophancy in visual language models (VLMs) has been scarce. In this work, we extend the exploration of sycophancy from LLMs to VLMs, introducing the MM-SY benchmark to evaluate this phenomenon. We present evaluation results from multiple representative models, addressing the gap in sycophancy research for VLMs. To mitigate sycophancy, we propose a synthetic dataset for training and employ methods based on prompts, supervised fine-tuning, and DPO. Our experiments demonstrate that these methods effectively alleviate sycophancy in VLMs. Additionally, we probe VLMs to assess the semantic impact of sycophancy and analyze the attention distribution of visual tokens. Our findings indicate that the ability to prevent sycophancy is predominantly observed in higher layers of the model. The lack of attention to image knowledge in these higher layers may contribute to sycophancy, and enhancing image attention at high layers proves beneficial in mitigating this issue.


Beyond Boundaries: Learning a Universal Entity Taxonomy across Datasets and Languages for Open Named Entity Recognition

arXiv.org Artificial Intelligence

Open Named Entity Recognition (NER), which involves identifying arbitrary types of entities from arbitrary domains, remains challenging for Large Language Models (LLMs). Recent studies suggest that fine-tuning LLMs on extensive NER data can boost their performance. However, training directly on existing datasets faces issues due to inconsistent entity definitions and redundant data, limiting LLMs to dataset-specific learning and hindering out-of-domain generalization. To address this, we present B2NERD, a cohesive and efficient dataset for Open NER, normalized from 54 existing English or Chinese datasets using a two-step approach. First, we detect inconsistent entity definitions across datasets and clarify them by distinguishable label names to construct a universal taxonomy of 400+ entity types. Second, we address redundancy using a data pruning strategy that selects fewer samples with greater category and semantic diversity. Comprehensive evaluation shows that B2NERD significantly improves LLMs' generalization on Open NER. Our B2NER models, trained on B2NERD, outperform GPT-4 by 6.8-12.0 F1 points and surpass previous methods in 3 out-of-domain benchmarks across 15 datasets and 6 languages.


Contributing Dimension Structure of Deep Feature for Coreset Selection

arXiv.org Artificial Intelligence

Coreset selection seeks to choose a subset of crucial training samples for efficient learning. It has gained traction in deep learning, particularly with the surge in training dataset sizes. Sample selection hinges on two main aspects: a sample's representation in enhancing performance and the role of sample diversity in averting overfitting. Existing methods typically measure both the representation and diversity of data based on similarity metrics, such as L2-norm. They have capably tackled representation via distribution matching guided by the similarities of features, gradients, or other information between data. However, the results of effectively diverse sample selection are mired in sub-optimality. This is because the similarity metrics usually simply aggregate dimension similarities without acknowledging disparities among the dimensions that significantly contribute to the final similarity. As a result, they fall short of adequately capturing diversity. To address this, we propose a feature-based diversity constraint, compelling the chosen subset to exhibit maximum diversity. Our key lies in the introduction of a novel Contributing Dimension Structure (CDS) metric. Different from similarity metrics that measure the overall similarity of high-dimensional features, our CDS metric considers not only the reduction of redundancy in feature dimensions, but also the difference between dimensions that contribute significantly to the final similarity. We reveal that existing methods tend to favor samples with similar CDS, leading to a reduced variety of CDS types within the coreset and subsequently hindering model performance. In response, we enhance the performance of five classical selection methods by integrating the CDS constraint. Our experiments on three datasets demonstrate the general effectiveness of the proposed method in boosting existing methods.