Wang, Yufeng
Graph Structure Refinement with Energy-based Contrastive Learning
Zeng, Xianlin, Wang, Yufeng, Sun, Yuqi, Guo, Guodong, Zhang, Baochang, Ding, Wenrui
Graph Neural Networks (GNNs) have recently gained widespread attention as a successful tool for analyzing graph-structured data. However, imperfect graph structure with noisy links lacks enough robustness and may damage graph representations, therefore limiting the GNNs' performance in practical tasks. Moreover, existing generative architectures fail to fit discriminative graph-related tasks. To tackle these issues, we introduce an unsupervised method based on a joint of generative training and discriminative training to learn graph structure and representation, aiming to improve the discriminative performance of generative models. We propose an Energy-based Contrastive Learning (ECL) guided Graph Structure Refinement (GSR) framework, denoted as ECL-GSR. To our knowledge, this is the first work to combine energy-based models with contrastive learning for GSR. Specifically, we leverage ECL to approximate the joint distribution of sample pairs, which increases the similarity between representations of positive pairs while reducing the similarity between negative ones. Refined structure is produced by augmenting and removing edges according to the similarity metrics among node representations. Extensive experiments demonstrate that ECL-GSR outperforms the state-of-the-art on eight benchmark datasets in node classification. ECL-GSR achieves faster training with fewer samples and memories against the leading baseline, highlighting its simplicity and efficiency in downstream tasks.
Generating Long-form Story Using Dynamic Hierarchical Outlining with Memory-Enhancement
Wang, Qianyue, Hu, Jinwu, Li, Zhengping, Wang, Yufeng, li, daiyuan, Hu, Yu, Tan, Mingkui
Long-form story generation task aims to produce coherent and sufficiently lengthy text, essential for applications such as novel writingand interactive storytelling. However, existing methods, including LLMs, rely on rigid outlines or lack macro-level planning, making it difficult to achieve both contextual consistency and coherent plot development in long-form story generation. To address this issues, we propose Dynamic Hierarchical Outlining with Memory-Enhancement long-form story generation method, named DOME, to generate the long-form story with coherent content and plot. Specifically, the Dynamic Hierarchical Outline(DHO) mechanism incorporates the novel writing theory into outline planning and fuses the plan and writing stages together, improving the coherence of the plot by ensuring the plot completeness and adapting to the uncertainty during story generation. A Memory-Enhancement Module (MEM) based on temporal knowledge graphs is introduced to store and access the generated content, reducing contextual conflicts and improving story coherence. Finally, we propose a Temporal Conflict Analyzer leveraging temporal knowledge graphs to automatically evaluate the contextual consistency of long-form story. Experiments demonstrate that DOME significantly improves the fluency, coherence, and overall quality of generated long stories compared to state-of-the-art methods.
Dynamic Ensemble Reasoning for LLM Experts
Hu, Jinwu, Wang, Yufeng, Zhang, Shuhai, Zhou, Kai, Chen, Guohao, Hu, Yu, Xiao, Bin, Tan, Mingkui
Ensemble reasoning for the strengths of different LLM experts is critical to achieving consistent and satisfactory performance on diverse inputs across a wide range of tasks. However, existing LLM ensemble methods are either computationally intensive or incapable of leveraging complementary knowledge among LLM experts for various inputs. In this paper, we propose a Dynamic Ensemble Reasoning paradigm, called DER to integrate the strengths of multiple LLM experts conditioned on dynamic inputs. Specifically, we model the LLM ensemble reasoning problem as a Markov Decision Process (MDP), wherein an agent sequentially takes inputs to request knowledge from an LLM candidate and passes the output to a subsequent LLM candidate. Moreover, we devise a reward function to train a DER-Agent to dynamically select an optimal answering route given the input questions, aiming to achieve the highest performance with as few computational resources as possible. Last, to fully transfer the expert knowledge from the prior LLMs, we develop a Knowledge Transfer Prompt (KTP) that enables the subsequent LLM candidates to transfer complementary knowledge effectively. Experiments demonstrate that our method uses fewer computational resources to achieve better performance compared to state-of-the-art baselines.
Enhancing Perception Capabilities of Multimodal LLMs with Training-Free Fusion
Chen, Zhuokun, Hu, Jinwu, Deng, Zeshuai, Wang, Yufeng, Zhuang, Bohan, Tan, Mingkui
Multimodal LLMs (MLLMs) equip language models with visual capabilities by aligning vision encoders with language models. Existing methods to enhance the visual perception of MLLMs often involve designing more powerful vision encoders, which requires exploring a vast design space and re-aligning each potential encoder with the language model, resulting in prohibitively high training costs. In this paper, we introduce VisionFuse, a novel integration framework that efficiently utilizes multiple vision encoders from off-the-shelf MLLMs to enhance visual perception without requiring additional training. Our approach is motivated by the observation that different MLLMs tend to focus on distinct regions given the same query and image. Moreover, we find that the feature distributions of vision encoders within an MLLM family, a group of MLLMs sharing the same pretrained LLM, are highly aligned. Building on these insights, VisionFuse enriches the visual context by concatenating the tokens generated by the vision encoders of selected MLLMs within a family. By merging the parameters of language models from these MLLMs, VisionFuse allows a single language model to align with various vision encoders, significantly reducing deployment overhead. We conduct comprehensive evaluations across multiple multimodal benchmarks using various MLLM combinations, demonstrating substantial improvements in multimodal tasks. Notably, when integrating MiniGemini-8B and SLIME-8B, VisionFuse achieves an average performance increase of over 4%.
A Cross-Scene Benchmark for Open-World Drone Active Tracking
Sun, Haowei, Hu, Jinwu, Zhang, Zhirui, Tian, Haoyuan, Xie, Xinze, Wang, Yufeng, Yu, Zhuliang, Xie, Xiaohua, Tan, Mingkui
Drone Visual Active Tracking aims to autonomously follow a target object by controlling the motion system based on visual observations, providing a more practical solution for effective tracking in dynamic environments. However, accurate Drone Visual Active Tracking using reinforcement learning remains challenging due to the absence of a unified benchmark, the complexity of open-world environments with frequent interference, and the diverse motion behavior of dynamic targets. To address these issues, we propose a unified cross-scene cross-domain benchmark for open-world drone active tracking called DAT. The DAT benchmark provides 24 visually complex environments to assess the algorithms' cross-scene and cross-domain generalization abilities, and high-fidelity modeling of realistic robot dynamics. Additionally, we propose a reinforcement learning-based drone tracking method called R-VAT, which aims to improve the performance of drone tracking targets in complex scenarios. Specifically, inspired by curriculum learning, we introduce a Curriculum-Based Training strategy that progressively enhances the agent tracking performance in vast environments with complex interference. We design a goal-centered reward function to provide precise feedback to the drone agent, preventing targets farther from the center of view from receiving higher rewards than closer ones. This allows the drone to adapt to the diverse motion behavior of open-world targets. Experiments demonstrate that the R-VAT has about 400% improvement over the SOTA method in terms of the cumulative reward metric.
E-ICL: Enhancing Fine-Grained Emotion Recognition through the Lens of Prototype Theory
Yang, Zhou, Ren, Zhaochun, Ye, Chenglong, Wang, Yufeng, Sun, Haizhou, Chen, Chao, Zhu, Xiaofei, Wu, Yunbing, Liao, Xiangwen
In-context learning (ICL) achieves remarkable performance in various domains such as knowledge acquisition, commonsense reasoning, and semantic understanding. However, its performance significantly deteriorates for emotion detection tasks, especially fine-grained emotion recognition. The underlying reasons for this remain unclear. In this paper, we identify the reasons behind ICL's poor performance from the perspective of prototype theory and propose a method to address this issue. Specifically, we conduct extensive pilot experiments and find that ICL conforms to the prototype theory on fine-grained emotion recognition. Based on this theory, we uncover the following deficiencies in ICL: (1) It relies on prototypes (example-label pairs) that are semantically similar but emotionally inaccurate to predict emotions. (2) It is prone to interference from irrelevant categories, affecting the accuracy and robustness of the predictions. To address these issues, we propose an Emotion Context Learning method (E-ICL) on fine-grained emotion recognition. E-ICL relies on more emotionally accurate prototypes to predict categories by referring to emotionally similar examples with dynamic labels. Simultaneously, E-ICL employs an exclusionary emotion prediction strategy to avoid interference from irrelevant categories, thereby increasing its accuracy and robustness. Note that the entire process is accomplished with the assistance of a plug-and-play emotion auxiliary model, without additional training. Experiments on the fine-grained emotion datasets EDOS, Empathetic-Dialogues, EmpatheticIntent, and GoEmotions show that E-ICL achieves superior emotion prediction performance. Furthermore, even when the emotion auxiliary model used is lower than 10% of the LLMs, E-ICL can still boost the performance of LLMs by over 4% on multiple datasets.
An Iterative Associative Memory Model for Empathetic Response Generation
Yang, Zhou, Ren, Zhaochun, Wang, Yufeng, Chen, Chao, Sun, Haizhou, Zhu, Xiaofei, Liao, Xiangwen
Empathetic response generation aims to comprehend the cognitive and emotional states in dialogue utterances and generate proper responses. Psychological theories posit that comprehending emotional and cognitive states necessitates iteratively capturing and understanding associated words across dialogue utterances. However, existing approaches regard dialogue utterances as either a long sequence or independent utterances for comprehension, which are prone to overlook the associated words between them. To address this issue, we propose an Iterative Associative Memory Model (IAMM) for empathetic response generation. Specifically, we employ a novel second-order interaction attention mechanism to iteratively capture vital associated words between dialogue utterances and situations, dialogue history, and a memory module (for storing associated words), thereby accurately and nuancedly comprehending the utterances. We conduct experiments on the Empathetic-Dialogue dataset. Both automatic and human evaluations validate the efficacy of the model. Variant experiments on LLMs also demonstrate that attending to associated words improves empathetic comprehension and expression.
Exploiting Emotion-Semantic Correlations for Empathetic Response Generation
Yang, Zhou, Ren, Zhaochun, Wang, Yufeng, Zhu, Xiaofei, Chen, Zhihao, Cai, Tiecheng, Wu, Yunbing, Su, Yisong, Ju, Sibo, Liao, Xiangwen
Empathetic response generation aims to generate empathetic responses by understanding the speaker's emotional feelings from the language of dialogue. Recent methods capture emotional words in the language of communicators and construct them as static vectors to perceive nuanced emotions. However, linguistic research has shown that emotional words in language are dynamic and have correlations with other grammar semantic roles, i.e., words with semantic meanings, in grammar. Previous methods overlook these two characteristics, which easily lead to misunderstandings of emotions and neglect of key semantics. To address this issue, we propose a dynamical Emotion-Semantic Correlation Model (ESCM) for empathetic dialogue generation tasks. ESCM constructs dynamic emotion-semantic vectors through the interaction of context and emotions. We introduce dependency trees to reflect the correlations between emotions and semantics. Based on dynamic emotion-semantic vectors and dependency trees, we propose a dynamic correlation graph convolutional network to guide the model in learning context meanings in dialogue and generating empathetic responses. Experimental results on the EMPATHETIC-DIALOGUES dataset show that ESCM understands semantics and emotions more accurately and expresses fluent and informative empathetic responses. Our analysis results also indicate that the correlations between emotions and semantics are frequently used in dialogues, which is of great significance for empathetic perception and expression.
DCIR: Dynamic Consistency Intrinsic Reward for Multi-Agent Reinforcement Learning
Lin, Kunyang, Wang, Yufeng, Chen, Peihao, Zeng, Runhao, Zhou, Siyuan, Tan, Mingkui, Gan, Chuang
Learning optimal behavior policy for each agent in multi-agent systems is an essential yet difficult problem. Despite fruitful progress in multi-agent reinforcement learning, the challenge of addressing the dynamics of whether two agents should exhibit consistent behaviors is still under-explored. In this paper, we propose a new approach that enables agents to learn whether their behaviors should be consistent with that of other agents by utilizing intrinsic rewards to learn the optimal policy for each agent. We begin by defining behavior consistency as the divergence in output actions between two agents when provided with the same observation. Subsequently, we introduce dynamic consistency intrinsic reward (DCIR) to stimulate agents to be aware of others' behaviors and determine whether to be consistent with them. Lastly, we devise a dynamic scale network (DSN) that provides learnable scale factors for the agent at every time step to dynamically ascertain whether to award consistent behavior and the magnitude of rewards. We evaluate DCIR in multiple environments including Multi-agent Particle, Google Research Football and StarCraft II Micromanagement, demonstrating its efficacy.
PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial Networks for Stochastic Differential Equations
Gao, Ruisong, Wang, Yufeng, Yang, Min, Chen, Chuanjun
We present a new category of physics-informed neural networks called physics informed variational embedding generative adversarial network (PI-VEGAN), that effectively tackles the forward, inverse, and mixed problems of stochastic differential equations. In these scenarios, the governing equations are known, but only a limited number of sensor measurements of the system parameters are available. We integrate the governing physical laws into PI-VEGAN with automatic differentiation, while introducing a variational encoder for approximating the latent variables of the actual distribution of the measurements. These latent variables are integrated into the generator to facilitate accurate learning of the characteristics of the stochastic partial equations. Our model consists of three components, namely the encoder, generator, and discriminator, each of which is updated alternatively employing the stochastic gradient descent algorithm. We evaluate the effectiveness of PI-VEGAN in addressing forward, inverse, and mixed problems that require the concurrent calculation of system parameters and solutions. Numerical results demonstrate that the proposed method achieves satisfactory stability and accuracy in comparison with the previous physics-informed generative adversarial network (PI-WGAN).