Goto

Collaborating Authors

 Wang, Yuanqing


Molecular Dynamics and Machine Learning Unlock Possibilities in Beauty Design -- A Perspective

arXiv.org Artificial Intelligence

Computational molecular design -- the endeavor to design molecules, with various missions, aided by machine learning and molecular dynamics approaches, has been widely applied to create valuable new molecular entities, from small molecule therapeutics to protein biologics. In the small data regime, physics-based approaches model the interaction between the molecule being designed and proteins of key physiological functions, providing structural insights into the mechanism. When abundant data has been collected, a quantitative structure-activity relationship (QSAR) can be more directly constructed from experimental data, from which machine learning can distill key insights to guide the design of the next round of experiment design. Machine learning methodologies can also facilitate physical modeling, from improving the accuracy of force fields and extending them to unseen chemical spaces, to more directly enhancing the sampling on the conformational spaces. We argue that these techniques are mature enough to be applied to not just extend the longevity of life, but the beauty it manifests. In this perspective, we review the current frontiers in the research \& development of skin care products, as well as the statistical and physical toolbox applicable to addressing the challenges in this industry. Feasible interdisciplinary research projects are proposed to harness the power of machine learning tools to design innovative, effective, and inexpensive skin care products.


Machine-learned molecular mechanics force field for the simulation of protein-ligand systems and beyond

arXiv.org Artificial Intelligence

The development of reliable and extensible molecular mechanics (MM) force fields -- fast, empirical models characterizing the potential energy surface of molecular systems -- is indispensable for biomolecular simulation and computer-aided drug design. Here, we introduce a generalized and extensible machine-learned MM force field, \texttt{espaloma-0.3}, and an end-to-end differentiable framework using graph neural networks to overcome the limitations of traditional rule-based methods. Trained in a single GPU-day to fit a large and diverse quantum chemical dataset of over 1.1M energy and force calculations, \texttt{espaloma-0.3} reproduces quantum chemical energetic properties of chemical domains highly relevant to drug discovery, including small molecules, peptides, and nucleic acids. Moreover, this force field maintains the quantum chemical energy-minimized geometries of small molecules and preserves the condensed phase properties of peptides, self-consistently parametrizing proteins and ligands to produce stable simulations leading to highly accurate predictions of binding free energies. This methodology demonstrates significant promise as a path forward for systematically building more accurate force fields that are easily extensible to new chemical domains of interest.


OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials

arXiv.org Artificial Intelligence

Machine learning plays an important and growing role in molecular simulation. The newest version of the OpenMM molecular dynamics toolkit introduces new features to support the use of machine learning potentials. Arbitrary PyTorch models can be added to a simulation and used to compute forces and energy. A higher-level interface allows users to easily model their molecules of interest with general purpose, pretrained potential functions. A collection of optimized CUDA kernels and custom PyTorch operations greatly improves the speed of simulations. We demonstrate these features on simulations of cyclin-dependent kinase 8 (CDK8) and the green fluorescent protein (GFP) chromophore in water. Taken together, these features make it practical to use machine learning to improve the accuracy of simulations at only a modest increase in cost.


EspalomaCharge: Machine learning-enabled ultra-fast partial charge assignment

arXiv.org Artificial Intelligence

Atomic partial charges are crucial parameters in molecular dynamics (MD) simulation, dictating the electrostatic contributions to intermolecular energies, and thereby the potential energy landscape. Traditionally, the assignment of partial charges has relied on surrogates of \textit{ab initio} semiempirical quantum chemical methods such as AM1-BCC, and is expensive for large systems or large numbers of molecules. We propose a hybrid physical / graph neural network-based approximation to the widely popular AM1-BCC charge model that is orders of magnitude faster while maintaining accuracy comparable to differences in AM1-BCC implementations. Our hybrid approach couples a graph neural network to a streamlined charge equilibration approach in order to predict molecule-specific atomic electronegativity and hardness parameters, followed by analytical determination of optimal charge-equilibrated parameters that preserves total molecular charge. This hybrid approach scales linearly with the number of atoms, enabling, for the first time, the use of fully consistent charge models for small molecules and biopolymers for the construction of next-generation self-consistent biomolecular force fields. Implemented in the free and open source package \texttt{espaloma\_charge}, this approach provides drop-in replacements for both AmberTools \texttt{antechamber} and the Open Force Field Toolkit charging workflows, in addition to stand-alone charge generation interfaces. Source code is available at \url{https://github.com/choderalab/espaloma_charge}.


Spatial Attention Kinetic Networks with E(n)-Equivariance

arXiv.org Artificial Intelligence

Neural networks that are equivariant to rotations, translations, reflections, and permutations on n-dimensional geometric space have shown promise in physical modeling for tasks such as accurately but inexpensively modeling complex potential energy surfaces to guiding the sampling of complex dynamical systems or forecasting their time evolution. Current state-of-the-art methods employ spherical harmonics to encode higher-order interactions among particles, which are computationally expensive. In this paper, we propose a simple alternative functional form that uses neurally parametrized linear combinations of edge vectors to achieve equivariance while still universally approximating node environments. Incorporating this insight, we design spatial attention kinetic networks with E(n)-equivariance, or SAKE, which are competitive in many-body system modeling tasks while being significantly faster.


SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials

arXiv.org Artificial Intelligence

Machine learning potentials are an important tool for molecular simulation, but their development is held back by a shortage of high quality datasets to train them on. We describe the SPICE dataset, a new quantum chemistry dataset for training potentials relevant to simulating drug-like small molecules interacting with proteins. It contains over 1.1 million conformations for a diverse set of small molecules, dimers, dipeptides, and solvated amino acids. It includes 15 elements, charged and uncharged molecules, and a wide range of covalent and non-covalent interactions. It provides both forces and energies calculated at the ฯ‰B97M-D3(BJ)/def2-TZVPPD level of theory, along with other useful quantities such as multipole moments and bond orders. We train a set of machine learning potentials on it and demonstrate that they can achieve chemical accuracy across a broad region of chemical space. It can serve as a valuable resource for the creation of transferable, ready to use potential functions for use in molecular simulations.


Stochastic Aggregation in Graph Neural Networks

arXiv.org Artificial Intelligence

We herein present a unifying framework for stochastic aggregation (STAG) in GNNs, where noise is (adaptively) Nonetheless, such aggregation scheme also causes limitations injected into the aggregation process from of GNNs. Firstly, without proper choices of aggregation the neighborhood to form node embeddings. We functions, GNNs are not always as powerful as WL provide theoretical arguments that STAG models, test. When pooling from (transformed) neighborhood representations, with little overhead, remedy both of the aforementioned if the underlying set for the neighborhood problems. In addition to fixed-noise multiset (See Definition 1 of Xu et al. (2018)) is countable, models, we also propose probabilistic versions of as has been studied in detail in Xu et al. (2018), although STAG models and a variational inference framework different multiset functions learn different attributes of the to learn the noise posterior. We conduct illustrative neighborhood--MAX learns distinct elements and MEAN experiments clearly targeting oversmoothing learns distributions--only SUM is injective and thus capable and multiset aggregation limitations.


End-to-End Differentiable Molecular Mechanics Force Field Construction

arXiv.org Artificial Intelligence

Molecular mechanics (MM) potentials have long been a workhorse of computational chemistry. Leveraging accuracy and speed, these functional forms find use in a wide variety of applications from rapid virtual screening to detailed free energy calculations. Traditionally, MM potentials have relied on human-curated, inflexible, and poorly extensible discrete chemical perception rules (atom types) for applying parameters to molecules or biopolymers, making them difficult to optimize to fit quantum chemical or physical property data. Here, we propose an alternative approach that uses graph nets to perceive chemical environments, producing continuous atom embeddings from which valence and nonbonded parameters can be predicted using a feed-forward neural network. Since all stages are built using smooth functions, the entire process of chemical perception and parameter assignment is differentiable end-to-end with respect to model parameters, allowing new force fields to be easily constructed, extended, and applied to arbitrary molecules. We show that this approach has the capacity to reproduce legacy atom types and can be fit to MM and QM energies and forces, among other targets.