Goto

Collaborating Authors

 Wang, Yuanda


Learning Autonomous Race Driving with Action Mapping Reinforcement Learning

arXiv.org Artificial Intelligence

Autonomous race driving poses a complex control challenge as vehicles must be operated at the edge of their handling limits to reduce lap times while respecting physical and safety constraints. This paper presents a novel reinforcement learning (RL)-based approach, incorporating the action mapping (AM) mechanism to manage state-dependent input constraints arising from limited tire-road friction. A numerical approximation method is proposed to implement AM, addressing the complex dynamics associated with the friction constraints. The AM mechanism also allows the learned driving policy to be generalized to different friction conditions. Experimental results in our developed race simulator demonstrate that the proposed AM-RL approach achieves superior lap times and better success rates compared to the conventional RL-based approaches. The generalization capability of driving policy with AM is also validated in the experiments.


XuanCe: A Comprehensive and Unified Deep Reinforcement Learning Library

arXiv.org Artificial Intelligence

In this paper, we present XuanCe, a comprehensive and unified deep reinforcement learning (DRL) library designed to be compatible with PyTorch, TensorFlow, and MindSpore. XuanCe offers a wide range of functionalities, including over 40 classical DRL and multi-agent DRL algorithms, with the flexibility to easily incorporate new algorithms and environments. It is a versatile DRL library that supports CPU, GPU, and Ascend, and can be executed on various operating systems such as Ubuntu, Windows, MacOS, and EulerOS. Extensive benchmarks conducted on popular environments including MuJoCo, Atari, and StarCraftII multi-agent challenge demonstrate the library's impressive performance.


Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI Systems

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) systems such as autonomous vehicles, facial recognition, and speech recognition systems are increasingly integrated into our daily lives. However, despite their utility, these AI systems are vulnerable to a wide range of attacks such as adversarial, backdoor, data poisoning, membership inference, model inversion, and model stealing attacks. In particular, numerous attacks are designed to target a particular model or system, yet their effects can spread to additional targets, referred to as transferable attacks. Although considerable efforts have been directed toward developing transferable attacks, a holistic understanding of the advancements in transferable attacks remains elusive. In this paper, we comprehensively explore learning-based attacks from the perspective of transferability, particularly within the context of cyber-physical security. We delve into different domains -- the image, text, graph, audio, and video domains -- to highlight the ubiquitous and pervasive nature of transferable attacks. This paper categorizes and reviews the architecture of existing attacks from various viewpoints: data, process, model, and system. We further examine the implications of transferable attacks in practical scenarios such as autonomous driving, speech recognition, and large language models (LLMs). Additionally, we outline the potential research directions to encourage efforts in exploring the landscape of transferable attacks. This survey offers a holistic understanding of the prevailing transferable attacks and their impacts across different domains.


PhantomSound: Black-Box, Query-Efficient Audio Adversarial Attack via Split-Second Phoneme Injection

arXiv.org Artificial Intelligence

In this paper, we propose PhantomSound, a query-efficient black-box attack toward voice assistants. Existing black-box adversarial attacks on voice assistants either apply substitution models or leverage the intermediate model output to estimate the gradients for crafting adversarial audio samples. However, these attack approaches require a significant amount of queries with a lengthy training stage. PhantomSound leverages the decision-based attack to produce effective adversarial audios, and reduces the number of queries by optimizing the gradient estimation. In the experiments, we perform our attack against 4 different speech-to-text APIs under 3 real-world scenarios to demonstrate the real-time attack impact. The results show that PhantomSound is practical and robust in attacking 5 popular commercial voice controllable devices over the air, and is able to bypass 3 liveness detection mechanisms with >95% success rate. The benchmark result shows that PhantomSound can generate adversarial examples and launch the attack in a few minutes. We significantly enhance the query efficiency and reduce the cost of a successful untargeted and targeted adversarial attack by 93.1% and 65.5% compared with the state-of-the-art black-box attacks, using merely ~300 queries (~5 minutes) and ~1,500 queries (~25 minutes), respectively.


Understanding Multi-Turn Toxic Behaviors in Open-Domain Chatbots

arXiv.org Artificial Intelligence

Recent advances in natural language processing and machine learning have led to the development of chatbot models, such as ChatGPT, that can engage in conversational dialogue with human users. However, the ability of these models to generate toxic or harmful responses during a non-toxic multi-turn conversation remains an open research question. Existing research focuses on single-turn sentence testing, while we find that 82\% of the individual non-toxic sentences that elicit toxic behaviors in a conversation are considered safe by existing tools. In this paper, we design a new attack, \toxicbot, by fine-tuning a chatbot to engage in conversation with a target open-domain chatbot. The chatbot is fine-tuned with a collection of crafted conversation sequences. Particularly, each conversation begins with a sentence from a crafted prompt sentences dataset. Our extensive evaluation shows that open-domain chatbot models can be triggered to generate toxic responses in a multi-turn conversation. In the best scenario, \toxicbot achieves a 67\% activation rate. The conversation sequences in the fine-tuning stage help trigger the toxicity in a conversation, which allows the attack to bypass two defense methods. Our findings suggest that further research is needed to address chatbot toxicity in a dynamic interactive environment. The proposed \toxicbot can be used by both industry and researchers to develop methods for detecting and mitigating toxic responses in conversational dialogue and improve the robustness of chatbots for end users.