Wang, Yuanbo
Multi-Modality Transformer for E-Commerce: Inferring User Purchase Intention to Bridge the Query-Product Gap
Mallapragada, Srivatsa, Xie, Ying, Chawan, Varsha Rani, Hailat, Zeyad, Wang, Yuanbo
E-commerce click-stream data and product catalogs offer critical user behavior insights and product knowledge. This paper propose a multi-modal transformer termed as PINCER, that leverages the above data sources to transform initial user queries into pseudo-product representations. By tapping into these external data sources, our model can infer users' potential purchase intent from their limited queries and capture query relevant product features. We demonstrate our model's superior performance over state-of-the-art alternatives on e-commerce online retrieval in both controlled and real-world experiments. Our ablation studies confirm that the proposed transformer architecture and integrated learning strategies enable the mining of key data sources to infer purchase intent, extract product features, and enhance the transformation pipeline from queries to more accurate pseudo-product representations.
Model-based Reinforcement Learning for Predictions and Control for Limit Order Books
Wei, Haoran, Wang, Yuanbo, Mangu, Lidia, Decker, Keith
We build a profitable electronic trading agent with Reinforcement Learning that places buy and sell orders in the stock market. An environment model is built only with historical observational data, and the RL agent learns the trading policy by interacting with the environment model instead of with the real-market to minimize the risk and potential monetary loss. Trained in unsupervised and self-supervised fashion, our environment model learned a temporal and causal representation of the market in latent space through deep neural networks. We demonstrate that the trading policy trained entirely within the environment model can be transferred back into the real market and maintain its profitability. We believe that this environment model can serve as a robust simulator that predicts market movement as well as trade impact for further studies.