Plotting

 Wang, Yu


LaViC: Adapting Large Vision-Language Models to Visually-Aware Conversational Recommendation

arXiv.org Artificial Intelligence

Conversational recommender systems engage users in dialogues to refine their needs and provide more personalized suggestions. Although textual information suffices for many domains, visually driven categories such as fashion or home decor potentially require detailed visual information related to color, style, or design. To address this challenge, we propose LaViC (Large Vision-Language Conversational Recommendation Framework), a novel approach that integrates compact image representations into dialogue-based recommendation systems. LaViC leverages a large vision-language model in a two-stage process: (1) visual knowledge self-distillation, which condenses product images from hundreds of tokens into a small set of visual tokens in a self-distillation manner, significantly reducing computational overhead, and (2) recommendation prompt tuning, which enables the model to incorporate both dialogue context and distilled visual tokens, providing a unified mechanism for capturing textual and visual features. To support rigorous evaluation of visually-aware conversational recommendation, we construct a new dataset by aligning Reddit conversations with Amazon product listings across multiple visually oriented categories (e.g., fashion, beauty, and home). This dataset covers realistic user queries and product appearances in domains where visual details are crucial. Extensive experiments demonstrate that LaViC significantly outperforms text-only conversational recommendation methods and open-source vision-language baselines. Moreover, LaViC achieves competitive or superior accuracy compared to prominent proprietary baselines (e.g., GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), demonstrating the necessity of explicitly using visual data for capturing product attributes and showing the effectiveness of our vision-language integration. Our code and dataset are available at https://github.com/jeon185/LaViC.


Advancements in Natural Language Processing: Exploring Transformer-Based Architectures for Text Understanding

arXiv.org Artificial Intelligence

Natural Language Processing (NLP) has witnessed a transformative leap with the advent of transformer-based architectures, which have significantly enhanced the ability of machines to understand and generate human-like text. This paper explores the advancements in transformer models, such as BERT and GPT, focusing on their superior performance in text understanding tasks compared to traditional methods like recurrent neural networks (RNNs). By analyzing statistical properties through visual representations-including probability density functions of text length distributions and feature space classifications-the study highlights the models' proficiency in handling long-range dependencies, adapting to conditional shifts, and extracting features for classification, even with overlapping classes. Drawing on recent 2024 research, including enhancements in multi-hop knowledge graph reasoning and context-aware chat interactions, the paper outlines a methodology involving data preparation, model selection, pretraining, fine-tuning, and evaluation. The results demonstrate state-of-the-art performance on benchmarks like GLUE and SQuAD, with F1 scores exceeding 90%, though challenges such as high computational costs persist. This work underscores the pivotal role of transformers in modern NLP and suggests future directions, including efficiency optimization and multimodal integration, to further advance language-based AI systems.


FROG: Fair Removal on Graphs

arXiv.org Artificial Intelligence

As compliance with privacy regulations becomes increasingly critical, the growing demand for data privacy has highlighted the significance of machine unlearning in many real world applications, such as social network and recommender systems, many of which can be represented as graph-structured data. However, existing graph unlearning algorithms indiscriminately modify edges or nodes from well-trained models without considering the potential impact of such structural modifications on fairness. For example, forgetting links between nodes with different genders in a social network may exacerbate group disparities, leading to significant fairness concerns. To address these challenges, we propose a novel approach that jointly optimizes the graph structure and the corresponding model for fair unlearning tasks. Specifically,our approach rewires the graph to enhance unlearning efficiency by removing redundant edges that hinder forgetting while preserving fairness through targeted edge augmentation. Additionally, we introduce a worst-case evaluation mechanism to assess the reliability of fair unlearning performance. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed approach in achieving superior unlearning outcomes.


Reducing Class-wise Confusion for Incremental Learning with Disentangled Manifolds

arXiv.org Artificial Intelligence

Class incremental learning (CIL) aims to enable models to continuously learn new classes without catastrophically forgetting old ones. A promising direction is to learn and use prototypes of classes during incremental updates. Despite simplicity and intuition, we find that such methods suffer from inadequate representation capability and unsatisfied feature overlap. These two factors cause class-wise confusion and limited performance. In this paper, we develop a Confusion-REduced AuTo-Encoder classifier (CREATE) for CIL. Specifically, our method employs a lightweight auto-encoder module to learn compact manifold for each class in the latent subspace, constraining samples to be well reconstructed only on the semantically correct auto-encoder. Thus, the representation stability and capability of class distributions are enhanced, alleviating the potential class-wise confusion problem. To further distinguish the overlapped features, we propose a confusion-aware latent space separation loss that ensures samples are closely distributed in their corresponding low-dimensional manifold while keeping away from the distributions of features from other classes. Our method demonstrates stronger representational capacity and discrimination ability by learning disentangled manifolds and reduces class confusion. Extensive experiments on multiple datasets and settings show that CREATE outperforms other state-of-the-art methods up to 5.41%.


Empowering GraphRAG with Knowledge Filtering and Integration

arXiv.org Artificial Intelligence

In recent years, large language models (LLMs) have revolutionized the field of natural language processing. However, they often suffer from knowledge gaps and hallucinations. Graph retrieval-augmented generation (GraphRAG) enhances LLM reasoning by integrating structured knowledge from external graphs. However, we identify two key challenges that plague GraphRAG:(1) Retrieving noisy and irrelevant information can degrade performance and (2)Excessive reliance on external knowledge suppresses the model's intrinsic reasoning. To address these issues, we propose GraphRAG-FI (Filtering and Integration), consisting of GraphRAG-Filtering and GraphRAG-Integration. GraphRAG-Filtering employs a two-stage filtering mechanism to refine retrieved information. GraphRAG-Integration employs a logits-based selection strategy to balance external knowledge from GraphRAG with the LLM's intrinsic reasoning,reducing over-reliance on retrievals. Experiments on knowledge graph QA tasks demonstrate that GraphRAG-FI significantly improves reasoning performance across multiple backbone models, establishing a more reliable and effective GraphRAG framework.


MEET: A Million-Scale Dataset for Fine-Grained Geospatial Scene Classification with Zoom-Free Remote Sensing Imagery

arXiv.org Artificial Intelligence

Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications. However, existing approaches often rely on manually zooming remote sensing images at different scales to create typical scene samples. This approach fails to adequately support the fixed-resolution image interpretation requirements in real-world scenarios. To address this limitation, we introduce the Million-scale finE-grained geospatial scEne classification dataseT (MEET), which contains over 1.03 million zoom-free remote sensing scene samples, manually annotated into 80 fine-grained categories. In MEET, each scene sample follows a scene-inscene layout, where the central scene serves as the reference, and auxiliary scenes provide crucial spatial context for finegrained classification. Moreover, to tackle the emerging challenge of scene-in-scene classification, we present the Context-Aware Transformer (CAT), a model specifically designed for this task, which adaptively fuses spatial context to accurately classify the scene samples. CAT adaptively fuses spatial context to accurately classify the scene samples by learning attentional features that capture the relationships between the center and auxiliary scenes. Based on MEET, we establish a comprehensive benchmark for fine-grained geospatial scene classification, evaluating CAT against 11 competitive baselines. The results demonstrate that CAT significantly outperforms these baselines, achieving a 1.88% higher balanced accuracy (BA) with the Swin-Large backbone, and a notable 7.87% improvement with the Swin-Huge backbone. Further experiments validate the effectiveness of each module in CAT and show the practical applicability of CAT in the urban functional zone mapping. The source code and dataset will be publicly available at https://jerrywyn.github.io/project/MEET.html.


RankPO: Preference Optimization for Job-Talent Matching

arXiv.org Artificial Intelligence

Matching job descriptions (JDs) with suitable talent requires models capable of understanding not only textual similarities between JDs and candidate resumes but also contextual factors such as geographical location and academic seniority. To address this challenge, we propose a two-stage training framework for large language models (LLMs). In the first stage, a contrastive learning approach is used to train the model on a dataset constructed from real-world matching rules, such as geographical alignment and research area overlap. While effective, this model primarily learns patterns that defined by the matching rules. In the second stage, we introduce a novel preference-based fine-tuning method inspired by Direct Preference Optimization (DPO), termed Rank Preference Optimization (RankPO), to align the model with AI-curated pairwise preferences emphasizing textual understanding. Our experiments show that while the first-stage model achieves strong performance on rule-based data (nDCG@20 = 0.706), it lacks robust textual understanding (alignment with AI annotations = 0.46). By fine-tuning with RankPO, we achieve a balanced model that retains relatively good performance in the original tasks while significantly improving the alignment with AI preferences. The code and data are available at https://github.com/yflyzhang/RankPO.


Concept-Driven Deep Learning for Enhanced Protein-Specific Molecular Generation

arXiv.org Artificial Intelligence

In recent years, deep learning techniques have made significant strides in molecular generation for specific targets, driving advancements in drug discovery. However, existing molecular generation methods present significant limitations: those operating at the atomic level often lack synthetic feasibility, drug-likeness, and interpretability, while fragment-based approaches frequently overlook comprehensive factors that influence protein-molecule interactions. To address these challenges, we propose a novel fragment-based molecular generation framework tailored for specific proteins. Our method begins by constructing a protein subpocket and molecular arm concept-based neural network, which systematically integrates interaction force information and geometric complementarity to sample molecular arms for specific protein subpockets. Subsequently, we introduce a diffusion model to generate molecular backbones that connect these arms, ensuring structural integrity and chemical diversity. Our approach significantly improves synthetic feasibility and binding affinity, with a 4% increase in drug-likeness and a 6% improvement in synthetic feasibility. Furthermore, by integrating explicit interaction data through a concept-based model, our framework enhances interpretability, offering valuable insights into the molecular design process.


Gradient-guided Attention Map Editing: Towards Efficient Contextual Hallucination Mitigation

arXiv.org Artificial Intelligence

In tasks like summarization and open-book question answering (QA), Large Language Models (LLMs) often encounter "contextual hallucination", where they produce irrelevant or incorrect responses despite having access to accurate source information. This typically occurs because these models tend to prioritize self-generated content over the input context, causing them to disregard pertinent details. To address this challenge, we introduce a novel method called "Guided Attention Map Editing" (GAME), which dynamically adjusts attention maps to improve contextual relevance. During inference, GAME employs a trained classifier to identify attention maps prone to inducing hallucinations and executes targeted interventions. These interventions, guided by gradient-informed "edit directions'', strategically redistribute attention weights across various heads to effectively reduce hallucination. Comprehensive evaluations on challenging summarization and open-book QA tasks show that GAME consistently reduces hallucinations across a variety of open-source models. Specifically, GAME reduces hallucinations by 10% in the XSum summarization task while achieving a 7X speed-up in computational efficiency compared to the state-of-the-art baselines.


HEATS: A Hierarchical Framework for Efficient Autonomous Target Search with Mobile Manipulators

arXiv.org Artificial Intelligence

Utilizing robots for autonomous target search in complex and unknown environments can greatly improve the efficiency of search and rescue missions. However, existing methods have shown inadequate performance due to hardware platform limitations, inefficient viewpoint selection strategies, and conservative motion planning. In this work, we propose HEATS, which enhances the search capability of mobile manipulators in complex and unknown environments. We design a target viewpoint planner tailored to the strengths of mobile manipulators, ensuring efficient and comprehensive viewpoint planning. Supported by this, a whole-body motion planner integrates global path search with local IPC optimization, enabling the mobile manipulator to safely and agilely visit target viewpoints, significantly improving search performance. We present extensive simulated and real-world tests, in which our method demonstrates reduced search time, higher target search completeness, and lower movement cost compared to classic and state-of-the-art approaches. Our method will be open-sourced for community benefit.