Wang, Yixuan
DemoGen: Synthetic Demonstration Generation for Data-Efficient Visuomotor Policy Learning
Xue, Zhengrong, Deng, Shuying, Chen, Zhenyang, Wang, Yixuan, Yuan, Zhecheng, Xu, Huazhe
Visuomotor policies have shown great promise in robotic manipulation but often require substantial amounts of human-collected data for effective performance. A key reason underlying the data demands is their limited spatial generalization capability, which necessitates extensive data collection across different object configurations. In this work, we present DemoGen, a low-cost, fully synthetic approach for automatic demonstration generation. Using only one human-collected demonstration per task, DemoGen generates spatially augmented demonstrations by adapting the demonstrated action trajectory to novel object configurations. Visual observations are synthesized by leveraging 3D point clouds as the modality and rearranging the subjects in the scene via 3D editing. Empirically, DemoGen significantly enhances policy performance across a diverse range of real-world manipulation tasks, showing its applicability even in challenging scenarios involving deformable objects, dexterous hand end-effectors, and bimanual platforms. Furthermore, DemoGen can be extended to enable additional out-of-distribution capabilities, including disturbance resistance and obstacle avoidance.
Logical forms complement probability in understanding language model (and human) performance
Wang, Yixuan, Shi, Freda
With the increasing interest in using large language models (LLMs) for planning in natural language, understanding their behaviors becomes an important research question. This work conducts a systematic investigation of LLMs' ability to perform logical reasoning in natural language. We introduce a controlled dataset of hypothetical and disjunctive syllogisms in propositional and modal logic and use it as the testbed for understanding LLM performance. Our results lead to novel insights in predicting LLM behaviors: in addition to the probability of input (Gonen et al., 2023; McCoy et al., 2024), logical forms should be considered as important factors. In addition, we show similarities and discrepancies between the logical reasoning performances of humans and LLMs by collecting and comparing behavioral data from both.
CuriousBot: Interactive Mobile Exploration via Actionable 3D Relational Object Graph
Wang, Yixuan, Fermoselle, Leonor, Kelestemur, Tarik, Wang, Jiuguang, Li, Yunzhu
Mobile exploration is a longstanding challenge in robotics, yet current methods primarily focus on active perception instead of active interaction, limiting the robot's ability to interact with and fully explore its environment. Existing robotic exploration approaches via active interaction are often restricted to tabletop scenes, neglecting the unique challenges posed by mobile exploration, such as large exploration spaces, complex action spaces, and diverse object relations. In this work, we introduce a 3D relational object graph that encodes diverse object relations and enables exploration through active interaction. We develop a system based on this representation and evaluate it across diverse scenes. Our qualitative and quantitative results demonstrate the system's effectiveness and generalization capabilities, outperforming methods that rely solely on vision-language models (VLMs).
Infinity-MM: Scaling Multimodal Performance with Large-Scale and High-Quality Instruction Data
Gu, Shuhao, Zhang, Jialing, Zhou, Siyuan, Yu, Kevin, Xing, Zhaohu, Wang, Liangdong, Cao, Zhou, Jia, Jintao, Zhang, Zhuoyi, Wang, Yixuan, Hu, Zhenchong, Zhang, Bo-Wen, Li, Jijie, Liang, Dong, Zhao, Yingli, Wang, Songjing, Ao, Yulong, Ju, Yiming, Ma, Huanhuan, Li, Xiaotong, Diao, Haiwen, Cui, Yufeng, Wang, Xinlong, Liu, Yaoqi, Feng, Fangxiang, Liu, Guang
Recently, Vision-Language Models (VLMs) have achieved remarkable progress in multimodal tasks, and multimodal instruction data serves as the foundation for enhancing VLM capabilities. Despite the availability of several open-source multimodal datasets, limitations in the scale and quality of open-source instruction data hinder the performance of VLMs trained on these datasets, leading to a significant gap compared to models trained on closed-source data. To address this challenge, we introduce Infinity-MM, a large-scale multimodal instruction dataset. We collected the available multimodal instruction datasets and performed unified preprocessing, resulting in a dataset with over 40 million samples that ensures diversity and accuracy. Furthermore, to enable large-scale expansion of instruction data and support the continuous acquisition of high-quality data, we propose a synthetic instruction generation method based on a tagging system and open-source VLMs. By establishing correspondences between different types of images and associated instruction types, this method can provide essential guidance during data synthesis. Leveraging this high-quality data, we have trained a 2-billion-parameter Vision-Language Model, Aquila-VL-2B, which achieves state-of-the-art (SOTA) performance among models of similar scale. The data is available at: https://huggingface.co/datasets/BAAI/Infinity-MM.
3D-ViTac: Learning Fine-Grained Manipulation with Visuo-Tactile Sensing
Huang, Binghao, Wang, Yixuan, Yang, Xinyi, Luo, Yiyue, Li, Yunzhu
Tactile and visual perception are both crucial for humans to perform fine-grained interactions with their environment. Developing similar multi-modal sensing capabilities for robots can significantly enhance and expand their manipulation skills. This paper introduces \textbf{3D-ViTac}, a multi-modal sensing and learning system designed for dexterous bimanual manipulation. Our system features tactile sensors equipped with dense sensing units, each covering an area of 3$mm^2$. These sensors are low-cost and flexible, providing detailed and extensive coverage of physical contacts, effectively complementing visual information. To integrate tactile and visual data, we fuse them into a unified 3D representation space that preserves their 3D structures and spatial relationships. The multi-modal representation can then be coupled with diffusion policies for imitation learning. Through concrete hardware experiments, we demonstrate that even low-cost robots can perform precise manipulations and significantly outperform vision-only policies, particularly in safe interactions with fragile items and executing long-horizon tasks involving in-hand manipulation. Our project page is available at \url{https://binghao-huang.github.io/3D-ViTac/}.
Accurate RNA 3D structure prediction using a language model-based deep learning approach
Shen, Tao, Hu, Zhihang, Sun, Siqi, Liu, Di, Wong, Felix, Wang, Jiuming, Chen, Jiayang, Wang, Yixuan, Hong, Liang, Xiao, Jin, Zheng, Liangzhen, Krishnamoorthi, Tejas, King, Irwin, Wang, Sheng, Yin, Peng, Collins, James J., Li, Yu
Accurate prediction of RNA three-dimensional (3D) structure remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to scarcity of experimentally determined data, complicates computational prediction efforts. Here, we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pre-trained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate RhoFold+'s superiority over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and inter-helical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.
Inverse Delayed Reinforcement Learning
Zhan, Simon Sinong, Wu, Qingyuan, Ruan, Zhian, Yang, Frank, Wang, Philip, Wang, Yixuan, Jiao, Ruochen, Huang, Chao, Zhu, Qi
Inverse Reinforcement Learning (IRL) has demonstrated effectiveness in a variety of imitation tasks. In this paper, we introduce an IRL framework designed to extract rewarding features from expert trajectories affected by delayed disturbances. Instead of relying on direct observations, our approach employs an efficient off-policy adversarial training framework to derive expert features and recover optimal policies from augmented delayed observations. Empirical evaluations in the MuJoCo environment under diverse delay settings validate the effectiveness of our method. Furthermore, we provide a theoretical analysis showing that recovering expert policies from augmented delayed observations outperforms using direct delayed observations.
Exploring Performance Contrasts in TableQA: Step-by-Step Reasoning Boosts Bigger Language Models, Limits Smaller Language Models
Yang, Haoyan, Wang, Yixuan, Tong, Keyue, Zhu, Hongjin, Zhang, Yuanxin
This paper proposes a detailed prompting flow, termed Table-Logic, to investigate the performance contrasts between bigger and smaller language models (LMs) utilizing step-by-step reasoning methods in the TableQA task. The method processes tasks by sequentially identifying critical columns and rows given question and table with its structure, determining necessary aggregations, calculations, or comparisons, and finally inferring the results to generate a precise prediction. By deploying this method, we observe a 7.8% accuracy improvement in bigger LMs like Llama-3-70B compared to the vanilla on HybridQA, while smaller LMs like Llama-2-7B shows an 11% performance decline. We empirically investigate the potential causes of performance contrasts by exploring the capabilities of bigger and smaller LMs from various dimensions in TableQA task. Our findings highlight the limitations of the step-by-step reasoning method in small models and provide potential insights for making improvements.
Off-Dynamics Reinforcement Learning via Domain Adaptation and Reward Augmented Imitation
Guo, Yihong, Wang, Yixuan, Shi, Yuanyuan, Xu, Pan, Liu, Anqi
Training a policy in a source domain for deployment in the target domain under a dynamics shift can be challenging, often resulting in performance degradation. Previous work tackles this challenge by training on the source domain with modified rewards derived by matching distributions between the source and the target optimal trajectories. However, pure modified rewards only ensure the behavior of the learned policy in the source domain resembles trajectories produced by the target optimal policies, which does not guarantee optimal performance when the learned policy is actually deployed to the target domain. In this work, we propose to utilize imitation learning to transfer the policy learned from the reward modification to the target domain so that the new policy can generate the same trajectories in the target domain. Our approach, Domain Adaptation and Reward Augmented Imitation Learning (DARAIL), utilizes the reward modification for domain adaptation and follows the general framework of generative adversarial imitation learning from observation (GAIfO) by applying a reward augmented estimator for the policy optimization step. Theoretically, we present an error bound for our method under a mild assumption regarding the dynamics shift to justify the motivation of our method. Empirically, our method outperforms the pure modified reward method without imitation learning and also outperforms other baselines in benchmark off-dynamics environments.
GenDP: 3D Semantic Fields for Category-Level Generalizable Diffusion Policy
Wang, Yixuan, Yin, Guang, Huang, Binghao, Kelestemur, Tarik, Wang, Jiuguang, Li, Yunzhu
Diffusion-based policies have shown remarkable capability in executing complex robotic manipulation tasks but lack explicit characterization of geometry and semantics, which often limits their ability to generalize to unseen objects and layouts. To enhance the generalization capabilities of Diffusion Policy, we introduce a novel framework that incorporates explicit spatial and semantic information via 3D semantic fields. We generate 3D descriptor fields from multi-view RGBD observations with large foundational vision models, then compare these descriptor fields against reference descriptors to obtain semantic fields. The proposed method explicitly considers geometry and semantics, enabling strong generalization capabilities in tasks requiring category-level generalization, resolving geometric ambiguities, and attention to subtle geometric details. We evaluate our method across eight tasks involving articulated objects and instances with varying shapes and textures from multiple object categories. Our method demonstrates its effectiveness by increasing Diffusion Policy's average success rate on unseen instances from 20% to 93%. Additionally, we provide a detailed analysis and visualization to interpret the sources of performance gain and explain how our method can generalize to novel instances.