Goto

Collaborating Authors

 Wang, Yiwei


Speak Like a Native: Prompting Large Language Models in a Native Style

arXiv.org Artificial Intelligence

In-context learning (ICL) with large language models (LLMs) has become the modern tools of choice for many natural language processing tasks. However, how the text style of in-context examples influences the performance of LLMs still remains under-explored. This paper presents a novel and effective approach, named \textbf{AlignedCoT}, to improve the reasoning capability of LLMs by aligning the in-context examples with the native style of LLMs.''Native'' refers to the inherent characteristic of LLMs which can be probed by zero-shot scenarios.AlignedCoT is widely applicable to ICL methods, making it easy to combine with state-of-the-art techniques to further improve the LLMs' performance. We conduct extensive and comprehensive experiments on several benchmarks on mathematical question-answering, common-sense reasoning, and text understanding. The empirical results demonstrate that our AlignedCoT significantly improves performance over the carefully handcrafted demonstrations. Specifically, with AlignedCoT, we observe an average +3.2\% improvement for \texttt{gpt-3.5-turbo} compared to the carefully handcrafted CoT on multi-step reasoning benchmarks.Furthermore, we use AlignedCoT to rewrite the CoT text style in the training set, which improves the performance of Retrieval Augmented Generation by 3.6\%.The source code and dataset is available at https://github.com/yangzhch6/AlignedCoT


LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting

arXiv.org Artificial Intelligence

Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning in capturing non-linear patterns of traffic data. However, the promising results achieved on current public datasets may not be applicable to practical scenarios due to limitations within these datasets. First, the limited sizes of them may not reflect the real-world scale of traffic networks. Second, the temporal coverage of these datasets is typically short, posing hurdles in studying long-term patterns and acquiring sufficient samples for training deep models. Third, these datasets often lack adequate metadata for sensors, which compromises the reliability and interpretability of the data. To mitigate these limitations, we introduce the LargeST benchmark dataset. It encompasses a total number of 8,600 sensors in California with a 5-year time coverage and includes comprehensive metadata. Using LargeST, we perform in-depth data analysis to extract data insights, benchmark well-known baselines in terms of their performance and efficiency, and identify challenges as well as opportunities for future research.


A Causal View of Entity Bias in (Large) Language Models

arXiv.org Artificial Intelligence

Entity bias widely affects pretrained (large) language models, causing them to rely on (biased) parametric knowledge to make unfaithful predictions. Although causality-inspired methods have shown great potential to mitigate entity bias, it is hard to precisely estimate the parameters of underlying causal models in practice. The rise of black-box LLMs also makes the situation even worse, because of their inaccessible parameters and uncalibrated logits. To address these problems, we propose a specific structured causal model (SCM) whose parameters are comparatively easier to estimate. Building upon this SCM, we propose causal intervention techniques to mitigate entity bias for both white-box and black-box settings. The proposed causal intervention perturbs the original entity with neighboring entities. This intervention reduces specific biasing information pertaining to the original entity while still preserving sufficient semantic information from similar entities. Under the white-box setting, our training-time intervention improves OOD performance of PLMs on relation extraction (RE) and machine reading comprehension (MRC) by 5.7 points and by 9.1 points, respectively. Under the black-box setting, our in-context intervention effectively reduces the entity-based knowledge conflicts of GPT-3.5, achieving up to 20.5 points of improvement of exact match accuracy on MRC and up to 17.6 points of reduction in memorization ratio on RE. Our code is available at https://github.com/luka-group/Causal-View-of-Entity-Bias.


Primacy Effect of ChatGPT

arXiv.org Artificial Intelligence

Instruction-tuned large language models (LLMs), such as ChatGPT, have led to promising zero-shot performance in discriminative natural language understanding (NLU) tasks. This involves querying the LLM using a prompt containing the question, and the candidate labels to choose from. The question-answering capabilities of ChatGPT arise from its pre-training on large amounts of human-written text, as well as its subsequent fine-tuning on human preferences, which motivates us to ask: Does ChatGPT also inherits humans' cognitive biases? In this paper, we study the primacy effect of ChatGPT: the tendency of selecting the labels at earlier positions as the answer. We have two main findings: i) ChatGPT's decision is sensitive to the order of labels in the prompt; ii) ChatGPT has a clearly higher chance to select the labels at earlier positions as the answer. We hope that our experiments and analyses provide additional insights into building more reliable ChatGPT-based solutions. We release the source code at https://github.com/wangywUST/PrimacyEffectGPT.


How Fragile is Relation Extraction under Entity Replacements?

arXiv.org Artificial Intelligence

Relation extraction (RE) aims to extract the relations between entity names from the textual context. In principle, textual context determines the ground-truth relation and the RE models should be able to correctly identify the relations reflected by the textual context. However, existing work has found that the RE models memorize the entity name patterns to make RE predictions while ignoring the textual context. This motivates us to raise the question: ``are RE models robust to the entity replacements?'' In this work, we operate the random and type-constrained entity replacements over the RE instances in TACRED and evaluate the state-of-the-art RE models under the entity replacements. We observe the 30\% - 50\% F1 score drops on the state-of-the-art RE models under entity replacements. These results suggest that we need more efforts to develop effective RE models robust to entity replacements. We release the source code at https://github.com/wangywUST/RobustRE.


Flashlight: Scalable Link Prediction with Effective Decoders

arXiv.org Artificial Intelligence

Link prediction (LP) has been recognized as an important task in graph learning with its broad practical applications. A typical application of LP is to retrieve the top scoring neighbors for a given source node, such as the friend recommendation. These services desire the high inference scalability to find the top scoring neighbors from many candidate nodes at low latencies. There are two popular decoders that the recent LP models mainly use to compute the edge scores from node embeddings: the HadamardMLP and Dot Product decoders. After theoretical and empirical analysis, we find that the HadamardMLP decoders are generally more effective for LP. However, HadamardMLP lacks the scalability for retrieving top scoring neighbors on large graphs, since to the best of our knowledge, there does not exist an algorithm to retrieve the top scoring neighbors for HadamardMLP decoders in sublinear complexity. To make HadamardMLP scalable, we propose the Flashlight algorithm to accelerate the top scoring neighbor retrievals for HadamardMLP: a sublinear algorithm that progressively applies approximate maximum inner product search (MIPS) techniques with adaptively adjusted query embeddings. Empirical results show that Flashlight improves the inference speed of LP by more than 100 times on the large OGBL-CITATION2 dataset without sacrificing effectiveness. Our work paves the way for large-scale LP applications with the effective HadamardMLP decoders by greatly accelerating their inference.


AirFormer: Predicting Nationwide Air Quality in China with Transformers

arXiv.org Artificial Intelligence

Air pollution is a crucial issue affecting human health and livelihoods, as well as one of the barriers to economic and social growth. Forecasting air quality has become an increasingly important endeavor with significant social impacts, especially in emerging countries like China. In this paper, we present a novel Transformer architecture termed AirFormer to collectively predict nationwide air quality in China, with an unprecedented fine spatial granularity covering thousands of locations. AirFormer decouples the learning process into two stages -- 1) a bottom-up deterministic stage that contains two new types of self-attention mechanisms to efficiently learn spatio-temporal representations; 2) a top-down stochastic stage with latent variables to capture the intrinsic uncertainty of air quality data. We evaluate AirFormer with 4-year data from 1,085 stations in the Chinese Mainland. Compared to the state-of-the-art model, AirFormer reduces prediction errors by 5%~8% on 72-hour future predictions. Our source code is available at https://github.com/yoshall/airformer.


Time-Aware Neighbor Sampling for Temporal Graph Networks

arXiv.org Artificial Intelligence

We present a new neighbor sampling method on temporal graphs. In a temporal graph, predicting different nodes' time-varying properties can require the receptive neighborhood of various temporal scales. In this work, we propose the TNS (Time-aware Neighbor Sampling) method: TNS learns from temporal information to provide an adaptive receptive neighborhood for every node at any time. Learning how to sample neighbors is non-trivial, since the neighbor indices in time order are discrete and not differentiable. To address this challenge, we transform neighbor indices from discrete values to continuous ones by interpolating the neighbors' messages. TNS can be flexibly incorporated into popular temporal graph networks to improve their effectiveness without increasing their time complexity. TNS can be trained in an end-to-end manner. It needs no extra supervision and is automatically and implicitly guided to sample the neighbors that are most beneficial for prediction. Empirical results on multiple standard datasets show that TNS yields significant gains on edge prediction and node classification.


Structure-Aware Label Smoothing for Graph Neural Networks

arXiv.org Artificial Intelligence

Representing a label distribution as a one-hot vector is a common practice in training node classification models. However, the one-hot representation may not adequately reflect the semantic characteristics of a node in different classes, as some nodes may be semantically close to their neighbors in other classes. It would cause over-confidence since the models are encouraged to assign full probabilities when classifying every node. While training models with label smoothing can ease this problem to some degree, it still fails to capture the nodes' semantic characteristics implied by the graph structures. In this work, we propose a novel SALS (\textit{Structure-Aware Label Smoothing}) method as an enhancement component to popular node classification models. SALS leverages the graph structures to capture the semantic correlations between the connected nodes and generate the structure-aware label distribution to replace the original one-hot label vectors, thus improving the node classification performance without inference costs. Extensive experiments on seven node classification benchmark datasets reveal the effectiveness of our SALS on improving both transductive and inductive node classification. Empirical results show that SALS is superior to the label smoothing method and enhances the node classification models to outperform the baseline methods.


Low-Discrepancy Points via Energetic Variational Inference

arXiv.org Machine Learning

In this paper, we propose a deterministic variational inference approach and generate low-discrepancy points by minimizing the kernel discrepancy, also known as the Maximum Mean Discrepancy or MMD. Based on the general energetic variational inference framework by Wang et. al. (2021), minimizing the kernel discrepancy is transformed to solving a dynamic ODE system via the explicit Euler scheme. We name the resulting algorithm EVI-MMD and demonstrate it through examples in which the target distribution is fully specified, partially specified up to the normalizing constant, and empirically known in the form of training data. Its performances are satisfactory compared to alternative methods in the applications of distribution approximation, numerical integration, and generative learning. The EVI-MMD algorithm overcomes the bottleneck of the existing MMD-descent algorithms, which are mostly applicable to two-sample problems. Algorithms with more sophisticated structures and potential advantages can be developed under the EVI framework.