Goto

Collaborating Authors

 Wang, Yimeng


LMVD: A Large-Scale Multimodal Vlog Dataset for Depression Detection in the Wild

arXiv.org Artificial Intelligence

Depression can significantly impact many aspects of an individual's life, including their personal and social functioning, academic and work performance, and overall quality of life. Many researchers within the field of affective computing are adopting deep learning technology to explore potential patterns related to the detection of depression. However, because of subjects' privacy protection concerns, that data in this area is still scarce, presenting a challenge for the deep discriminative models used in detecting depression. To navigate these obstacles, a large-scale multimodal vlog dataset (LMVD), for depression recognition in the wild is built. In LMVD, which has 1823 samples with 214 hours of the 1475 participants captured from four multimedia platforms (Sina Weibo, Bilibili, Tiktok, and YouTube). A novel architecture termed MDDformer to learn the non-verbal behaviors of individuals is proposed. Extensive validations are performed on the LMVD dataset, demonstrating superior performance for depression detection. We anticipate that the LMVD will contribute a valuable function to the depression detection community. The data and code will released at the link: https://github.com/helang818/LMVD/.


Aspect-Based Sentiment Analysis with Explicit Sentiment Augmentations

arXiv.org Artificial Intelligence

Aspect-based sentiment analysis (ABSA), a fine-grained sentiment classification task, has received much attention recently. Many works investigate sentiment information through opinion words, such as ''good'' and ''bad''. However, implicit sentiment widely exists in the ABSA dataset, which refers to the sentence containing no distinct opinion words but still expresses sentiment to the aspect term. To deal with implicit sentiment, this paper proposes an ABSA method that integrates explicit sentiment augmentations. And we propose an ABSA-specific augmentation method to create such augmentations. Specifically, we post-trains T5 by rule-based data. We employ Syntax Distance Weighting and Unlikelihood Contrastive Regularization in the training procedure to guide the model to generate an explicit sentiment. Meanwhile, we utilize the Constrained Beam Search to ensure the augmentation sentence contains the aspect terms. We test ABSA-ESA on two of the most popular benchmarks of ABSA. The results show that ABSA-ESA outperforms the SOTA baselines on implicit and explicit sentiment accuracy.