Wang, Yijia
A multi-source data power load forecasting method using attention mechanism-based parallel cnn-gru
Min, Chao, Wang, Yijia, Zhang, Bo, Ma, Xin, Cui, Junyi
Accurate power load forecasting is crucial for improving energy efficiency and ensuring power supply quality. Considering the power load forecasting problem involves not only dynamic factors like historical load variations but also static factors such as climate conditions that remain constant over specific periods. From the model-agnostic perspective, this paper proposes a parallel structure network to extract important information from both dynamic and static data. Firstly, based on complexity learning theory, it is demonstrated that models integrated through parallel structures exhibit superior generalization abilities compared to individual base learners. Additionally, the higher the independence between base learners, the stronger the generalization ability of the parallel structure model. This suggests that the structure of machine learning models inherently contains significant information. Building on this theoretical foundation, a parallel convolutional neural network (CNN)-gate recurrent unit (GRU) attention model (PCGA) is employed to address the power load forecasting issue, aiming to effectively integrate the influences of dynamic and static features. The CNN module is responsible for capturing spatial characteristics from static data, while the GRU module captures long-term dependencies in dynamic time series data. The attention layer is designed to focus on key information from the spatial-temporal features extracted by the parallel CNN-GRU. To substantiate the advantages of the parallel structure model in extracting and integrating multi-source information, a series of experiments are conducted.
Towards Generalized Inverse Reinforcement Learning
Dong, Chaosheng, Wang, Yijia
This paper studies generalized inverse reinforcement learning (GIRL) in Markov decision processes (MDPs), that is, the problem of learning the basic components of an MDP given observed behavior (policy) that might not be optimal. These components include not only the reward function and transition probability matrices, but also the action space and state space that are not exactly known but are known to belong to given uncertainty sets. We address two key challenges in GIRL: first, the need to quantify the discrepancy between the observed policy and the underlying optimal policy; second, the difficulty of mathematically characterizing the underlying optimal policy when the basic components of an MDP are unobservable or partially observable. Then, we propose the mathematical formulation for GIRL and develop a fast heuristic algorithm. Numerical results on both finite and infinite state problems show the merit of our formulation and algorithm.
Data-Centric Financial Large Language Models
Chu, Zhixuan, Guo, Huaiyu, Zhou, Xinyuan, Wang, Yijia, Yu, Fei, Chen, Hong, Xu, Wanqing, Lu, Xin, Cui, Qing, Li, Longfei, Zhou, Jun, Li, Sheng
Large language models (LLMs) show promise for natural language tasks but struggle when applied directly to complex domains like finance. LLMs have difficulty reasoning about and integrating all relevant information. We propose a data-centric approach to enable LLMs to better handle financial tasks. Our key insight is that rather than overloading the LLM with everything at once, it is more effective to preprocess and pre-understand the data. We create a financial LLM (FLLM) using multitask prompt-based finetuning to achieve data pre-processing and pre-understanding. However, labeled data is scarce for each task. To overcome manual annotation costs, we employ abductive augmentation reasoning (AAR) to automatically generate training data by modifying the pseudo labels from FLLM's own outputs. Experiments show our data-centric FLLM with AAR substantially outperforms baseline financial LLMs designed for raw text, achieving state-of-the-art on financial analysis and interpretation tasks. We also open source a new benchmark for financial analysis and interpretation. Our methodology provides a promising path to unlock LLMs' potential for complex real-world domains.
Dynamic Subgoal-based Exploration via Bayesian Optimization
Wang, Yijia, Poloczek, Matthias, Jiang, Daniel R.
Reinforcement learning in sparse-reward navigation environments with expensive and limited interactions is challenging and poses a need for effective exploration. Motivated by complex navigation tasks that require real-world training (when cheap simulators are not available), we consider an agent that faces an unknown distribution of environments and must decide on an exploration strategy. It may leverage a series of training environments to improve its policy before it is evaluated in a test environment drawn from the same environment distribution. Most existing approaches focus on fixed exploration strategies, while the few that view exploration as a meta-optimization problem tend to ignore the need for cost-efficient exploration. We propose a cost-aware Bayesian optimization approach that efficiently searches over a class of dynamic subgoal-based exploration strategies. The algorithm adjusts a variety of levers -- the locations of the subgoals, the length of each episode, and the number of replications per trial -- in order to overcome the challenges of sparse rewards, expensive interactions, and noise. An experimental evaluation demonstrates that the new approach outperforms existing baselines across a number of problem domains. We also provide a theoretical foundation and prove that the method asymptotically identifies a near-optimal subgoal design.
qecGPT: decoding Quantum Error-correcting Codes with Generative Pre-trained Transformers
Cao, Hanyan, Pan, Feng, Wang, Yijia, Zhang, Pan
We propose a general framework for decoding quantum error-correcting codes with generative modeling. The model utilizes autoregressive neural networks, specifically Transformers, to learn the joint probability of logical operators and syndromes. This training is in an unsupervised way, without the need for labeled training data, and is thus referred to as pre-training. After the pre-training, the model can efficiently compute the likelihood of logical operators for any given syndrome, using maximum likelihood decoding. It can directly generate the most-likely logical operators with computational complexity $\mathcal O(2k)$ in the number of logical qubits $k$, which is significantly better than the conventional maximum likelihood decoding algorithms that require $\mathcal O(4^k)$ computation. Based on the pre-trained model, we further propose refinement to achieve more accurately the likelihood of logical operators for a given syndrome by directly sampling the stabilizer operators. We perform numerical experiments on stabilizer codes with small code distances, using both depolarizing error models and error models with correlated noise. The results show that our approach provides significantly better decoding accuracy than the minimum weight perfect matching and belief-propagation-based algorithms. Our framework is general and can be applied to any error model and quantum codes with different topologies such as surface codes and quantum LDPC codes. Furthermore, it leverages the parallelization capabilities of GPUs, enabling simultaneous decoding of a large number of syndromes. Our approach sheds light on the efficient and accurate decoding of quantum error-correcting codes using generative artificial intelligence and modern computational power.
Prediction of single well production rate in water-flooding oil fields driven by the fusion of static, temporal and spatial information
Min, Chao, Wang, Yijia, Yang, Huohai, Zhao, Wei
It is very difficult to forecast the production rate of oil wells as the output of a single well is sensitive to various uncertain factors, which implicitly or explicitly show the influence of the static, temporal and spatial properties on the oil well production. In this study, a novel machine learning model is constructed to fuse the static geological information, dynamic well production history, and spatial information of the adjacent water injection wells. There are 3 basic modules in this stacking model, which are regarded as the encoders to extract the features from different types of data. One is Multi-Layer Perceptron, which is to analyze the static geological properties of the reservoir that might influence the well production rate. The other two are both LSTMs, which have the input in the form of two matrices rather than vectors, standing for the temporal and the spatial information of the target well. The difference of the two modules is that in the spatial information processing module we take into consideration the time delay of water flooding response, from the injection well to the target well. In addition, we use Symbolic Transfer Entropy to prove the superiorities of the stacking model from the perspective of Causality Discovery. It is proved theoretically and practically that the presented model can make full use of the model structure to integrate the characteristics of the data and the experts' knowledge into the process of machine learning, greatly improving the accuracy and generalization ability of prediction.
Faster Approximate Dynamic Programming by Freezing Slow States
Wang, Yijia, Jiang, Daniel R.
We consider infinite horizon Markov decision processes (MDPs) with fast-slow structure, meaning that certain parts of the state space move "fast" (and in a sense, are more influential) while other parts transition more "slowly." Such structure is common in real-world problems where sequential decisions need to be made at high frequencies, yet information that varies at a slower timescale also influences the optimal policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying) stochastic costs, (2) a restless multi-armed bandit with an environmental state, and (3) energy demand response, where both day-ahead and real-time prices play a role in the firm's revenue. Models that fully capture these problems often result in MDPs with large state spaces and large effective time horizons (due to frequent decisions), rendering them computationally intractable. We propose an approximate dynamic programming algorithmic framework based on the idea of "freezing" the slow states, solving a set of simpler finite-horizon MDPs (the lower-level MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower timescale (the upper-level MDP). We also extend the technique to a function approximation setting, where a feature-based linear architecture is used. On the theoretical side, we analyze the regret incurred by each variant of our frozen-state approach. Finally, we give empirical evidence that the frozen-state approach generates effective policies using just a fraction of the computational cost, while illustrating that simply omitting slow states from the decision modeling is often not a viable heuristic.
Inverse Multiobjective Optimization Through Online Learning
Dong, Chaosheng, Wang, Yijia, Zeng, Bo
We study the problem of learning the objective functions or constraints of a multiobjective decision making model, based on a set of sequentially arrived decisions. In particular, these decisions might not be exact and possibly carry measurement noise or are generated with the bounded rationality of decision makers. In this paper, we propose a general online learning framework to deal with this learning problem using inverse multiobjective optimization. More precisely, we develop two online learning algorithms with implicit update rules which can handle noisy data. Numerical results show that both algorithms can learn the parameters with great accuracy and are robust to noise.