Goto

Collaborating Authors

 Wang, Yiheng


A Comparative Study of Pre-training and Self-training

arXiv.org Artificial Intelligence

Pre-training and self-training are two approaches to semi-supervised learning. The comparison between pre-training and self-training has been explored. However, the previous works led to confusing findings: self-training outperforms pre-training experienced on some tasks in computer vision, and contrarily, pre-training outperforms self-training experienced on some tasks in natural language processing, under certain conditions of incomparable settings. We propose, comparatively and exhaustively, an ensemble method to empirical study all feasible training paradigms combining pre-training, self-training, and fine-tuning within consistent foundational settings comparable to data augmentation. We conduct experiments on six datasets, four data augmentation, and imbalanced data for sentiment analysis and natural language inference tasks. Our findings confirm that the pre-training and fine-tuning paradigm yields the best overall performances. Moreover, self-training offers no additional benefits when combined with semi-supervised pre-training.


StockFormer: A Swing Trading Strategy Based on STL Decomposition and Self-Attention Networks

arXiv.org Artificial Intelligence

Amidst ongoing market recalibration and increasing investor optimism, the U.S. stock market is experiencing a resurgence, prompting the need for sophisticated tools to protect and grow portfolios. Addressing this, we introduce "Stockformer," a cutting-edge deep learning framework optimized for swing trading, featuring the TopKDropout method for enhanced stock selection. By integrating STL decomposition and self-attention networks, Stockformer utilizes the S&P 500's complex data to refine stock return predictions. Our methodology entailed segmenting data for training and validation (January 2021 to January 2023) and testing (February to June 2023). During testing, Stockformer's predictions outperformed ten industry models, achieving superior precision in key predictive accuracy indicators (MAE, RMSE, MAPE), with a remarkable accuracy rate of 62.39% in detecting market trends. In our backtests, Stockformer's swing trading strategy yielded a cumulative return of 13.19% and an annualized return of 30.80%, significantly surpassing current state-of-the-art models. Stockformer has emerged as a beacon of innovation in these volatile times, offering investors a potent tool for market forecasting. To advance the field and foster community collaboration, we have open-sourced Stockformer, available at https://github.com/Eric991005/Stockformer.


BigDL: A Distributed Deep Learning Framework for Big Data

arXiv.org Artificial Intelligence

In this paper, we present BigDL, a distributed deep learning framework for Big Data platforms and workflows. It is implemented on top of Apache Spark, and allows users to write their deep learning applications as standard Spark programs (running directly on large-scale big data clusters in a distributed fashion). It provides an expressive, "data-analytics integrated" deep learning programming model, so that users can easily build the end-to-end analytics + AI pipelines under a unified programming paradigm; by implementing an AllReduce like operation using existing primitives in Spark (e.g., shuffle, broadcast, and in-memory data persistence), it also provides a highly efficient "parameter server" style architecture, so as to achieve highly scalable, data-parallel distributed training. Since its initial open source release, BigDL users have built many analytics and deep learning applications (e.g., object detection, sequence-to-sequence generation, visual similarity, neural recommendations, fraud detection, etc.) on Spark.