Wang, Ye
Stabilizing Subject Transfer in EEG Classification with Divergence Estimation
Smedemark-Margulies, Niklas, Wang, Ye, Koike-Akino, Toshiaki, Liu, Jing, Parsons, Kieran, Bicer, Yunus, Erdogmus, Deniz
Classification models for electroencephalogram (EEG) data show a large decrease in performance when evaluated on unseen test sub jects. We reduce this performance decrease using new regularization techniques during model training. We propose several graphical models to describe an EEG classification task. From each model, we identify statistical relationships that should hold true in an idealized training scenario (with infinite data and a globally-optimal model) but that may not hold in practice. We design regularization penalties to enforce these relationships in two stages. First, we identify suitable proxy quantities (divergences such as Mutual Information and Wasserstein-1) that can be used to measure statistical independence and dependence relationships. Second, we provide algorithms to efficiently estimate these quantities during training using secondary neural network models. We conduct extensive computational experiments using a large benchmark EEG dataset, comparing our proposed techniques with a baseline method that uses an adversarial classifier. We find our proposed methods significantly increase balanced accuracy on test subjects and decrease overfitting. The proposed methods exhibit a larger benefit over a greater range of hyperparameters than the baseline method, with only a small computational cost at training time. These benefits are largest when used for a fixed training period, though there is still a significant benefit for a subset of hyperparameters when our techniques are used in conjunction with early stopping regularization.
On Memorization in Diffusion Models
Gu, Xiangming, Du, Chao, Pang, Tianyu, Li, Chongxuan, Lin, Min, Wang, Ye
Due to their capacity to generate novel and high-quality samples, diffusion models have attracted significant research interest in recent years. Notably, the typical training objective of diffusion models, i.e., denoising score matching, has a closed-form optimal solution that can only generate training data replicating samples. This indicates that a memorization behavior is theoretically expected, which contradicts the common generalization ability of state-of-the-art diffusion models, and thus calls for a deeper understanding. Looking into this, we first observe that memorization behaviors tend to occur on smaller-sized datasets, which motivates our definition of effective model memorization (EMM), a metric measuring the maximum size of training data at which a learned diffusion model approximates its theoretical optimum. Then, we quantify the impact of the influential factors on these memorization behaviors in terms of EMM, focusing primarily on data distribution, model configuration, and training procedure. Besides comprehensive empirical results identifying the influential factors, we surprisingly find that conditioning training data on uninformative random labels can significantly trigger the memorization in diffusion models. Our study holds practical significance for diffusion model users and offers clues to theoretical research in deep generative models. Code is available at https://github.com/sail-sg/DiffMemorize.
Data-driven Predictive Tracking Control based on Koopman Operators
Wang, Ye, Yang, Yujia, Pu, Ye, Manzie, Chris
Constraint handling during tracking operations is at the core of many real-world control implementations and is well understood when dynamic models of the underlying system exist, yet becomes more challenging when data-driven models are used to describe the nonlinear system at hand. We seek to combine the nonlinear modeling capabilities of a wide class of neural networks with the constraint-handling guarantees of model predictive control (MPC) in a rigorous and online computationally tractable framework. The class of networks considered can be captured using Koopman operators, and are integrated into a Koopman-based tracking MPC (KTMPC) for nonlinear systems to track piecewise constant references. The effect of model mismatch between original nonlinear dynamics and its trained Koopman linear model is handled by using a constraint tightening approach in the proposed tracking MPC strategy. By choosing two Lyapunov functions, we prove that solution is recursively feasible and input-to-state stable to a neighborhood of both online and offline optimal reachable steady outputs in the presence of bounded modeling errors under mild assumptions. Finally, we demonstrate the results on a numerical example, before applying the proposed approach to the problem of reference tracking by an autonomous ground vehicle.
What Determines the Price of NFTs?
Ziemke, Vivian, Estermann, Benjamin, Wattenhofer, Roger, Wang, Ye
In the evolving landscape of digital art, Non-Fungible Tokens (NFTs) have emerged as a groundbreaking platform, bridging the realms of art and technology. NFTs serve as the foundational framework that has revolutionized the market for digital art, enabling artists to showcase and monetize their creations in unprecedented ways. NFTs combine metadata stored on the blockchain with off-chain data, such as images, to create a novel form of digital ownership. It is not fully understood how these factors come together to determine NFT prices. In this study, we analyze both on-chain and off-chain data of NFT collections trading on OpenSea to understand what influences NFT pricing. Our results show that while text and image data of the NFTs can be used to explain price variations within collections, the extracted features do not generalize to new, unseen collections. Furthermore, we find that an NFT collection's trading volume often relates to its online presence, like social media followers and website traffic.
Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional Image Synthesis
Nair, Nithin Gopalakrishnan, Cherian, Anoop, Lohit, Suhas, Wang, Ye, Koike-Akino, Toshiaki, Patel, Vishal M., Marks, Tim K.
Conditional generative models typically demand large annotated training sets to achieve high-quality synthesis. As a result, there has been significant interest in designing models that perform plug-and-play generation, i.e., to use a predefined or pretrained model, which is not explicitly trained on the generative task, to guide the generative process (e.g., using language). However, such guidance is typically useful only towards synthesizing high-level semantics rather than editing fine-grained details as in image-to-image translation tasks. To this end, and capitalizing on the powerful fine-grained generative control offered by the recent diffusion-based generative models, we introduce Steered Diffusion, a generalized framework for photorealistic zero-shot conditional image generation using a diffusion model trained for unconditional generation. The key idea is to steer the image generation of the diffusion model at inference time via designing a loss using a pre-trained inverse model that characterizes the conditional task. This loss modulates the sampling trajectory of the diffusion process. Our framework allows for easy incorporation of multiple conditions during inference. We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution. Our results demonstrate clear qualitative and quantitative improvements over state-of-the-art diffusion-based plug-and-play models while adding negligible additional computational cost.
Large-scale Pretraining Improves Sample Efficiency of Active Learning based Molecule Virtual Screening
Cao, Zhonglin, Sciabola, Simone, Wang, Ye
Virtual screening of large compound libraries to identify potential hit candidates is one of the earliest steps in drug discovery. As the size of commercially available compound collections grows exponentially to the scale of billions, brute-force virtual screening using traditional tools such as docking becomes infeasible in terms of time and computational resources. Active learning and Bayesian optimization has recently been proven as effective methods of narrowing down the search space. An essential component in those methods is a surrogate machine learning model that is trained with a small subset of the library to predict the desired properties of compounds. Accurate model can achieve high sample efficiency by finding the most promising compounds with only a fraction of the whole library being virtually screened. In this study, we examined the performance of pretrained transformer-based language model and graph neural network in Bayesian optimization active learning framework. The best pretrained models identifies 58.97% of the top-50000 by docking score after screening only 0.6% of an ultra-large library containing 99.5 million compounds, improving 8% over previous state-of-the-art baseline. Through extensive benchmarks, we show that the superior performance of pretrained models persists in both structure-based and ligand-based drug discovery. Such model can serve as a boost to the accuracy and sample efficiency of active learning based molecule virtual screening.
Graph Self-Contrast Representation Learning
Chen, Minjie, Cheng, Yao, Wang, Ye, Li, Xiang, Gao, Ming
Graph contrastive learning (GCL) has recently emerged as a promising approach for graph representation learning. Some existing methods adopt the 1-vs-K scheme to construct one positive and K negative samples for each graph, but it is difficult to set K. For those methods that do not use negative samples, it is often necessary to add additional strategies to avoid model collapse, which could only alleviate the problem to some extent. All these drawbacks will undoubtedly have an adverse impact on the generalizability and efficiency of the model. In this paper, to address these issues, we propose a novel graph self-contrast framework GraphSC, which only uses one positive and one negative sample, and chooses triplet loss as the objective. Specifically, self-contrast has two implications. First, GraphSC generates both positive and negative views of a graph sample from the graph itself via graph augmentation functions of various intensities, and use them for self-contrast. Second, GraphSC uses Hilbert-Schmidt Independence Criterion (HSIC) to factorize the representations into multiple factors and proposes a masked self-contrast mechanism to better separate positive and negative samples. Further, Since the triplet loss only optimizes the relative distance between the anchor and its positive/negative samples, it is difficult to ensure the absolute distance between the anchor and positive sample. Therefore, we explicitly reduced the absolute distance between the anchor and positive sample to accelerate convergence. Finally, we conduct extensive experiments to evaluate the performance of GraphSC against 19 other state-of-the-art methods in both unsupervised and transfer learning settings.
Elucidate Gender Fairness in Singing Voice Transcription
Gu, Xiangming, Zeng, Wei, Wang, Ye
It is widely known that males and females typically possess different sound characteristics when singing, such as timbre and pitch, but it has never been explored whether these gender-based characteristics lead to a performance disparity in singing voice transcription (SVT), whose target includes pitch. Such a disparity could cause fairness issues and severely affect the user experience of downstream SVT applications. Motivated by this, we first demonstrate the female superiority of SVT systems, which is observed across different models and datasets. We find that different pitch distributions, rather than gender data imbalance, contribute to this disparity. To address this issue, we propose using an attribute predictor to predict gender labels and adversarially training the SVT system to enforce the gender-invariance of acoustic representations. Leveraging the prior knowledge that pitch distributions may contribute to the gender bias, we propose conditionally aligning acoustic representations between demographic groups by feeding note events to the attribute predictor. Empirical experiments on multiple benchmark SVT datasets show that our method significantly reduces gender bias (up to more than 50%) with negligible degradation of overall SVT performance, on both in-domain and out-of-domain singing data, thus offering a better fairness-utility trade-off.
LOAF-M2L: Joint Learning of Wording and Formatting for Singable Melody-to-Lyric Generation
Ou, Longshen, Ma, Xichu, Wang, Ye
Despite previous efforts in melody-to-lyric generation research, there is still a significant compatibility gap between generated lyrics and melodies, negatively impacting the singability of the outputs. This paper bridges the singability gap with a novel approach to generating singable lyrics by jointly Learning wOrding And Formatting during Melody-to-Lyric training (LOAF-M2L). After general-domain pretraining, our proposed model acquires length awareness first from a large text-only lyric corpus. Then, we introduce a new objective informed by musicological research on the relationship between melody and lyrics during melody-to-lyric training, which enables the model to learn the fine-grained format requirements of the melody. Our model achieves 3.75% and 21.44% absolute accuracy gains in the outputs' number-of-line and syllable-per-line requirements compared to naive fine-tuning, without sacrificing text fluency. Furthermore, our model demonstrates a 63.92% and 74.18% relative improvement of music-lyric compatibility and overall quality in the subjective evaluation, compared to the state-of-the-art melody-to-lyric generation model, highlighting the significance of formatting learning.
A Positive-Unlabeled Metric Learning Framework for Document-Level Relation Extraction with Incomplete Labeling
Wang, Ye, Pan, Huazheng, Zhang, Tao, Wu, Wen, Hu, Wenxin
The goal of document-level relation extraction (RE) is to identify relations between entities that span multiple sentences. Recently, incomplete labeling in document-level RE has received increasing attention, and some studies have used methods such as positive-unlabeled learning to tackle this issue, but there is still a lot of room for improvement. Motivated by this, we propose a positive-augmentation and positive-mixup positive-unlabeled metric learning framework (P3M). Specifically, we formulate document-level RE as a metric learning problem. We aim to pull the distance closer between entity pair embedding and their corresponding relation embedding, while pushing it farther away from the none-class relation embedding. Additionally, we adapt the positive-unlabeled learning to this loss objective. In order to improve the generalizability of the model, we use dropout to augment positive samples and propose a positive-none-class mixup method. Extensive experiments show that P3M improves the F1 score by approximately 4-10 points in document-level RE with incomplete labeling, and achieves state-of-the-art results in fully labeled scenarios. Furthermore, P3M has also demonstrated robustness to prior estimation bias in incomplete labeled scenarios.