Goto

Collaborating Authors

 Wang, Ye


UniCode: Learning a Unified Codebook for Multimodal Large Language Models

arXiv.org Artificial Intelligence

In this paper, we propose \textbf{UniCode}, a novel approach within the domain of multimodal large language models (MLLMs) that learns a unified codebook to efficiently tokenize visual, text, and potentially other types of signals. This innovation addresses a critical limitation in existing MLLMs: their reliance on a text-only codebook, which restricts MLLM's ability to generate images and texts in a multimodal context. Towards this end, we propose a language-driven iterative training paradigm, coupled with an in-context pre-training task we term ``image decompression'', enabling our model to interpret compressed visual data and generate high-quality images.The unified codebook empowers our model to extend visual instruction tuning to non-linguistic generation tasks. Moreover, UniCode is adaptable to diverse stacked quantization approaches in order to compress visual signals into a more compact token representation. Despite using significantly fewer parameters and less data during training, Unicode demonstrates promising capabilities in visual reconstruction and generation. It also achieves performances comparable to leading MLLMs across a spectrum of VQA benchmarks.


Can Large Language Models Recall Reference Location Like Humans?

arXiv.org Artificial Intelligence

When completing knowledge-intensive tasks, humans sometimes need not just an answer but also a corresponding reference passage for auxiliary reading. Previous methods required obtaining pre-segmented article chunks through additional retrieval models. This paper explores leveraging the parameterized knowledge stored during the pre-training phase of large language models (LLMs) to independently recall reference passage from any starting position. We propose a two-stage framework that simulates the scenario of humans recalling easily forgotten references. Initially, the LLM is prompted to recall document title identifiers to obtain a coarse-grained document set. Then, based on the acquired coarse-grained document set, it recalls fine-grained passage. In the two-stage recall process, we use constrained decoding to ensure that content outside of the stored documents is not generated. To increase speed, we only recall a short prefix in the second stage, then locate its position to retrieve a complete passage. Experiments on KILT knowledge-sensitive tasks have verified that LLMs can independently recall reference passage location in various task forms, and the obtained reference significantly assist downstream tasks.


Why Does Differential Privacy with Large Epsilon Defend Against Practical Membership Inference Attacks?

arXiv.org Artificial Intelligence

For small privacy parameter $\epsilon$, $\epsilon$-differential privacy (DP) provides a strong worst-case guarantee that no membership inference attack (MIA) can succeed at determining whether a person's data was used to train a machine learning model. The guarantee of DP is worst-case because: a) it holds even if the attacker already knows the records of all but one person in the data set; and b) it holds uniformly over all data sets. In practical applications, such a worst-case guarantee may be overkill: practical attackers may lack exact knowledge of (nearly all of) the private data, and our data set might be easier to defend, in some sense, than the worst-case data set. Such considerations have motivated the industrial deployment of DP models with large privacy parameter (e.g. $\epsilon \geq 7$), and it has been observed empirically that DP with large $\epsilon$ can successfully defend against state-of-the-art MIAs. Existing DP theory cannot explain these empirical findings: e.g., the theoretical privacy guarantees of $\epsilon \geq 7$ are essentially vacuous. In this paper, we aim to close this gap between theory and practice and understand why a large DP parameter can prevent practical MIAs. To tackle this problem, we propose a new privacy notion called practical membership privacy (PMP). PMP models a practical attacker's uncertainty about the contents of the private data. The PMP parameter has a natural interpretation in terms of the success rate of a practical MIA on a given data set. We quantitatively analyze the PMP parameter of two fundamental DP mechanisms: the exponential mechanism and Gaussian mechanism. Our analysis reveals that a large DP parameter often translates into a much smaller PMP parameter, which guarantees strong privacy against practical MIAs. Using our findings, we offer principled guidance for practitioners in choosing the DP parameter.


Agent Smith: A Single Image Can Jailbreak One Million Multimodal LLM Agents Exponentially Fast

arXiv.org Artificial Intelligence

A multimodal large language model (MLLM) agent can receive instructions, capture images, retrieve histories from memory, and decide which tools to use. Nonetheless, red-teaming efforts have revealed that adversarial images/prompts can jailbreak an MLLM and cause unaligned behaviors. In this work, we report an even more severe safety issue in multi-agent environments, referred to as infectious jailbreak. It entails the adversary simply jailbreaking a single agent, and without any further intervention from the adversary, (almost) all agents will become infected exponentially fast and exhibit harmful behaviors. To validate the feasibility of infectious jailbreak, we simulate multi-agent environments containing up to one million LLaVA-1.5 agents, and employ randomized pair-wise chat as a proof-of-concept instantiation for multi-agent interaction. Our results show that feeding an (infectious) adversarial image into the memory of any randomly chosen agent is sufficient to achieve infectious jailbreak. Finally, we derive a simple principle for determining whether a defense mechanism can provably restrain the spread of infectious jailbreak, but how to design a practical defense that meets this principle remains an open question to investigate. Our project page is available at https://sail-sg.github.io/Agent-Smith/.


Benchmarking Large Language Models on Communicative Medical Coaching: a Novel System and Dataset

arXiv.org Artificial Intelligence

Traditional applications of natural language processing (NLP) in healthcare have predominantly focused on patient-centered services, enhancing patient interactions and care delivery, such as through medical dialogue systems. However, the potential of NLP to benefit inexperienced doctors, particularly in areas such as communicative medical coaching, remains largely unexplored. We introduce ``ChatCoach,'' an integrated human-AI cooperative framework. Within this framework, both a patient agent and a coaching agent collaboratively support medical learners in practicing their medical communication skills during consultations. Unlike traditional dialogue systems, ChatCoach provides a simulated environment where a human doctor can engage in medical dialogue with a patient agent. Simultaneously, a coaching agent provides real-time feedback to the doctor. To construct the ChatCoach system, we developed a dataset and integrated Large Language Models such as ChatGPT and Llama2, aiming to assess their effectiveness in communicative medical coaching tasks. Our comparative analysis demonstrates that instruction-tuned Llama2 significantly outperforms ChatGPT's prompting-based approaches.


MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models

arXiv.org Artificial Intelligence

The emergence of various medical large language models (LLMs) in the medical domain has highlighted the need for unified evaluation standards, as manual evaluation of LLMs proves to be time-consuming and labor-intensive. To address this issue, we introduce MedBench, a comprehensive benchmark for the Chinese medical domain, comprising 40,041 questions sourced from authentic examination exercises and medical reports of diverse branches of medicine. In particular, this benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, the Doctor In-Charge Qualification Examination, and real-world clinic cases encompassing examinations, diagnoses, and treatments. MedBench replicates the educational progression and clinical practice experiences of doctors in Mainland China, thereby establishing itself as a credible benchmark for assessing the mastery of knowledge and reasoning abilities in medical language learning models. We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings: (1) Chinese medical LLMs underperform on this benchmark, highlighting the need for significant advances in clinical knowledge and diagnostic precision. (2) Several general-domain LLMs surprisingly possess considerable medical knowledge. These findings elucidate both the capabilities and limitations of LLMs within the context of MedBench, with the ultimate goal of aiding the medical research community.


Clickbait Detection via Large Language Models

arXiv.org Artificial Intelligence

Clickbait, which aims to induce users with some surprising and even thrilling headlines for increasing click-through rates, permeates almost all online content publishers, such as news portals and social media. Recently, Large Language Models (LLMs) have emerged as a powerful instrument and achieved tremendous success in a series of NLP downstream tasks. However, it is not yet known whether LLMs can be served as a high-quality clickbait detection system. In this paper, we analyze the performance of LLMs in the few-shot and zero-shot scenarios on several English and Chinese benchmark datasets. Experimental results show that LLMs cannot achieve the best results compared to the state-of-the-art deep and fine-tuning PLMs methods. Different from human intuition, the experiments demonstrated that LLMs cannot make satisfied clickbait detection just by the headlines.


GenKIE: Robust Generative Multimodal Document Key Information Extraction

arXiv.org Artificial Intelligence

Key information extraction (KIE) from scanned documents has gained increasing attention because of its applications in various domains. Although promising results have been achieved by some recent KIE approaches, they are usually built based on discriminative models, which lack the ability to handle optical character recognition (OCR) errors and require laborious token-level labelling. In this paper, we propose a novel generative end-to-end model, named GenKIE, to address the KIE task. GenKIE is a sequence-to-sequence multimodal generative model that utilizes multimodal encoders to embed visual, layout and textual features and a decoder to generate the desired output. Well-designed prompts are leveraged to incorporate the label semantics as the weakly supervised signals and entice the generation of the key information. One notable advantage of the generative model is that it enables automatic correction of OCR errors. Besides, token-level granular annotation is not required. Extensive experiments on multiple public real-world datasets show that GenKIE effectively generalizes over different types of documents and achieves state-of-the-art results. Our experiments also validate the model's robustness against OCR errors, making GenKIE highly applicable in real-world scenarios.


Advancing Test-Time Adaptation for Acoustic Foundation Models in Open-World Shifts

arXiv.org Artificial Intelligence

Test-Time Adaptation (TTA) is a critical paradigm for tackling distribution shifts during inference, especially in visual recognition tasks. However, while acoustic models face similar challenges due to distribution shifts in test-time speech, TTA techniques specifically designed for acoustic modeling in the context of openworld data shifts remain scarce. This gap is further exacerbated when considering the unique characteristics of acoustic foundation models: 1) they are primarily built on transformer architectures with layer normalization and 2) they deal with test-time speech data of varying lengths in a non-stationary manner. These aspects make the direct application of vision-focused TTA methods, which are mostly reliant on batch normalization and assume independent samples, infeasible. We find that noisy, high-entropy speech frames, often non-silent, carry key semantic content. Traditional TTA methods might inadvertently filter out this information using potentially flawed heuristics. In response, we introduce a heuristic-free, learning-based adaptation enriched by confidence enhancement. Noting that speech signals' short-term consistency, we also apply consistency regularization during test-time optimization. Deep neural networks (DNNs) have exhibited remarkable performance in scenarios where the training and testing sets adhere to the independent and identically distributed (i.i.d) assumption.


Towards Informative Few-Shot Prompt with Maximum Information Gain for In-Context Learning

arXiv.org Artificial Intelligence

Large Language models (LLMs) possess the capability to engage In-context Learning (ICL) by leveraging a few demonstrations pertaining to a new downstream task as conditions. However, this particular learning paradigm suffers from high instability stemming from substantial variances induced by factors such as the input distribution of selected examples, their ordering, and prompt formats. In this work, we demonstrate that even when all these factors are held constant, the random selection of examples still results in high variance. Consequently, we aim to explore the informative ability of data examples by quantifying the Information Gain (IG) obtained in prediction after observing a given example candidate. Then we propose to sample those with maximum IG. Additionally, we identify the presence of template bias, which can lead to unfair evaluations of IG during the sampling process. To mitigate this bias, we introduce Calibration Before Sampling strategy. The experimental results illustrate that our proposed method can yield an average relative improvement of 14.3% across six classification tasks using three LLMs.