Goto

Collaborating Authors

 Wang, Yanshu


HERA: High-efficiency Matrix Compression via Element Replacement

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have significantly advanced natural language processing tasks such as machine translation, text generation, and sentiment analysis. However, their large size, often consisting of billions of parameters, poses challenges for storage, computation, and deployment, particularly in resource-constrained environments like mobile devices and edge computing platforms. Additionally, the key-value (k-v) cache used to speed up query processing requires substantial memory and storage, exacerbating these challenges. Vector databases have emerged as a crucial technology to efficiently manage and retrieve the high-dimensional vectors produced by LLMs, facilitating faster data access and reducing computational demands. Effective compression and quantization techniques are essential to address these challenges, as they reduce the memory footprint and computational requirements without significantly compromising performance. Traditional methods that uniformly map parameters to compressed spaces often fail to account for the uneven distribution of parameters, leading to considerable accuracy loss. Therefore, innovative approaches are needed to achieve better compression ratios while preserving model performance. In this work, we propose HERA, a novel algorithm that employs heuristic Element Replacement for compressing matrix. HERA systematically replaces elements within the model using heuristic methods, which simplifies the structure of the model and makes subsequent compression more effective. By hierarchically segmenting, compressing, and reorganizing the matrix dataset, our method can effectively reduce the quantization error to 12.3% of the original at the same compression ratio.


Athena: Efficient Block-Wise Post-Training Quantization for Large Language Models Using Second-Order Matrix Derivative Information

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have significantly advanced natural language processing tasks such as machine translation, text generation, and sentiment analysis. However, their large size, often consisting of billions of parameters, poses challenges for storage, computation, and deployment, particularly in resource-constrained environments like mobile devices and edge computing platforms. Effective compression and quantization techniques are crucial for addressing these issues, reducing memory footprint and computational requirements without significantly compromising performance. Traditional methods that uniformly map parameters to compressed spaces fail to account for the uneven distribution of parameters, leading to substantial accuracy loss. In this work, we propose Athena, a novel algorithm for efficient block-wise post-training quantization of LLMs. Athena leverages Second-Order Matrix Derivative Information to guide the quantization process using the curvature information of the loss landscape. By grouping parameters by columns or rows and iteratively optimizing the quantization process, Athena updates the model parameters and Hessian matrix to achieve significant compression while maintaining high accuracy. This makes Athena a practical solution for deploying LLMs in various settings.


BML: A High-performance, Low-cost Gradient Synchronization Algorithm for DML Training

Neural Information Processing Systems

In distributed machine learning (DML), the network performance between machines significantly impacts the speed of iterative training. In this paper we propose BML, a new gradient synchronization algorithm with higher network performance and lower network cost than the current practice. BML runs on BCube network, instead of using the traditional Fat-Tree topology. BML algorithm is designed in such a way that, compared to the parameter server (PS) algorithm on a Fat-Tree network connecting the same number of server machines, BML achieves theoretically 1/k of the gradient synchronization time, with k/5 of switches (the typical number of k is 2∼4). Experiments of LeNet-5 and VGG-19 benchmarks on a testbed with 9 dual-GPU servers show that, BML reduces the job completion time of DML training by up to 56.4%.


BML: A High-performance, Low-cost Gradient Synchronization Algorithm for DML Training

Neural Information Processing Systems

In distributed machine learning (DML), the network performance between machines significantly impacts the speed of iterative training. In this paper we propose BML, a new gradient synchronization algorithm with higher network performance and lower network cost than the current practice. BML runs on BCube network, instead of using the traditional Fat-Tree topology. BML algorithm is designed in such a way that, compared to the parameter server (PS) algorithm on a Fat-Tree network connecting the same number of server machines, BML achieves theoretically 1/k of the gradient synchronization time, with k/5 of switches (the typical number of k is 2∼4). Experiments of LeNet-5 and VGG-19 benchmarks on a testbed with 9 dual-GPU servers show that, BML reduces the job completion time of DML training by up to 56.4%.