Goto

Collaborating Authors

 Wang, Yanshan


Extraction of Sleep Information from Clinical Notes of Patients with Alzheimer's Disease Using Natural Language Processing

arXiv.org Artificial Intelligence

Alzheimer's Disease (AD) is the most common form of dementia in the United States. Sleep is one of the lifestyle-related factors that has been shown critical for optimal cognitive function in old age. However, there is a lack of research studying the association between sleep and AD incidence. A major bottleneck for conducting such research is that the traditional way to acquire sleep information is time-consuming, inefficient, non-scalable, and limited to patients' subjective experience. A gold standard dataset is created from manual annotation of 570 randomly sampled clinical note documents from the adSLEEP, a corpus of 192,000 de-identified clinical notes of 7,266 AD patients retrieved from the University of Pittsburgh Medical Center (UPMC). We developed a rule-based Natural Language Processing (NLP) algorithm, machine learning models, and Large Language Model(LLM)-based NLP algorithms to automate the extraction of sleep-related concepts, including snoring, napping, sleep problem, bad sleep quality, daytime sleepiness, night wakings, and sleep duration, from the gold standard dataset. Rule-based NLP algorithm achieved the best performance of F1 across all sleep-related concepts. In terms of Positive Predictive Value (PPV), rule-based NLP algorithm achieved 1.00 for daytime sleepiness and sleep duration, machine learning models: 0.95 and for napping, 0.86 for bad sleep quality and 0.90 for snoring; and LLAMA2 with finetuning achieved PPV of 0.93 for Night Wakings, 0.89 for sleep problem, and 1.00 for sleep duration. The results show that the rule-based NLP algorithm consistently achieved the best performance for all sleep concepts. This study focused on the clinical notes of patients with AD, but could be extended to general sleep information extraction for other diseases.


Emerging Opportunities of Using Large Language Models for Translation Between Drug Molecules and Indications

arXiv.org Artificial Intelligence

A drug molecule is a substance that changes the organism's mental or physical state. Every approved drug has an indication, which refers to the therapeutic use of that drug for treating a particular medical condition. While the Large Language Model (LLM), a generative Artificial Intelligence (AI) technique, has recently demonstrated effectiveness in translating between molecules and their textual descriptions, there remains a gap in research regarding their application in facilitating the translation between drug molecules and indications, or vice versa, which could greatly benefit the drug discovery process. The capability of generating a drug from a given indication would allow for the discovery of drugs targeting specific diseases or targets and ultimately provide patients with better treatments. In this paper, we first propose a new task, which is the translation between drug molecules and corresponding indications, and then test existing LLMs on this new task. Specifically, we consider nine variations of the T5 LLM and evaluate them on two public datasets obtained from ChEMBL and DrugBank. Our experiments show the early results of using LLMs for this task and provide a perspective on the state-of-the-art. We also emphasize the current limitations and discuss future work that has the potential to improve the performance on this task. The creation of molecules from indications, or vice versa, will allow for more efficient targeting of diseases and significantly reduce the cost of drug discovery, with the potential to revolutionize the field of drug discovery in the era of generative AI.


Assertion Detection Large Language Model In-context Learning LoRA Fine-tuning

arXiv.org Artificial Intelligence

In this study, we aim to address the task of assertion detection when extracting medical concepts from clinical notes, a key process in clinical natural language processing (NLP). Assertion detection in clinical NLP usually involves identifying assertion types for medical concepts in the clinical text, namely certainty (whether the medical concept is positive, negated, possible, or hypothetical), temporality (whether the medical concept is for present or the past history), and experiencer (whether the medical concept is described for the patient or a family member). These assertion types are essential for healthcare professionals to quickly and clearly understand the context of medical conditions from unstructured clinical texts, directly influencing the quality and outcomes of patient care. Although widely used, traditional methods, particularly rule-based NLP systems and machine learning or deep learning models, demand intensive manual efforts to create patterns and tend to overlook less common assertion types, leading to an incomplete understanding of the context. To address this challenge, our research introduces a novel methodology that utilizes Large Language Models (LLMs) pre-trained on a vast array of medical data for assertion detection. We enhanced the current method with advanced reasoning techniques, including Tree of Thought (ToT), Chain of Thought (CoT), and Self-Consistency (SC), and refine it further with Low-Rank Adaptation (LoRA) fine-tuning. We first evaluated the model on the i2b2 2010 assertion dataset. Our method achieved a micro-averaged F-1 of 0.89, with 0.11 improvements over the previous works. To further assess the generalizability of our approach, we extended our evaluation to a local dataset that focused on sleep concept extraction. Our approach achieved an F-1 of 0.74, which is 0.31 higher than the previous method.


Leveraging Generative AI for Clinical Evidence Summarization Needs to Ensure Trustworthiness

arXiv.org Artificial Intelligence

Evidence-based medicine promises to improve the quality of healthcare by empowering medical decisions and practices with the best available evidence. The rapid growth of medical evidence, which can be obtained from various sources, poses a challenge in collecting, appraising, and synthesizing the evidential information. Recent advancements in generative AI, exemplified by large language models, hold promise in facilitating the arduous task. However, developing accountable, fair, and inclusive models remains a complicated undertaking. In this perspective, we discuss the trustworthiness of generative AI in the context of automated summarization of medical evidence.


Enhancing Large Language Models for Clinical Decision Support by Incorporating Clinical Practice Guidelines

arXiv.org Artificial Intelligence

Background Large Language Models (LLMs), enhanced with Clinical Practice Guidelines (CPGs), can significantly improve Clinical Decision Support (CDS). However, methods for incorporating CPGs into LLMs are not well studied. Methods We develop three distinct methods for incorporating CPGs into LLMs: Binary Decision Tree (BDT), Program-Aided Graph Construction (PAGC), and Chain-of-Thought-Few-Shot Prompting (CoT-FSP). To evaluate the effectiveness of the proposed methods, we create a set of synthetic patient descriptions and conduct both automatic and human evaluation of the responses generated by four LLMs: GPT-4, GPT-3.5 Turbo, LLaMA, and PaLM 2. Zero-Shot Prompting (ZSP) was used as the baseline method. We focus on CDS for COVID-19 outpatient treatment as the case study. Results All four LLMs exhibit improved performance when enhanced with CPGs compared to the baseline ZSP. BDT outperformed both CoT-FSP and PAGC in automatic evaluation. All of the proposed methods demonstrated high performance in human evaluation. Conclusion LLMs enhanced with CPGs demonstrate superior performance, as compared to plain LLMs with ZSP, in providing accurate recommendations for COVID-19 outpatient treatment, which also highlights the potential for broader applications beyond the case study.


Distilling Large Language Models for Matching Patients to Clinical Trials

arXiv.org Artificial Intelligence

The recent success of large language models (LLMs) has paved the way for their adoption in the high-stakes domain of healthcare. Specifically, the application of LLMs in patient-trial matching, which involves assessing patient eligibility against clinical trial's nuanced inclusion and exclusion criteria, has shown promise. Recent research has shown that GPT-3.5, a widely recognized LLM developed by OpenAI, can outperform existing methods with minimal 'variable engineering' by simply comparing clinical trial information against patient summaries. However, there are significant challenges associated with using closed-source proprietary LLMs like GPT-3.5 in practical healthcare applications, such as cost, privacy and reproducibility concerns. To address these issues, this study presents the first systematic examination of the efficacy of both proprietary (GPT-3.5, and GPT-4) and open-source LLMs (LLAMA 7B,13B, and 70B) for the task of patient-trial matching. Employing a multifaceted evaluation framework, we conducted extensive automated and human-centric assessments coupled with a detailed error analysis for each model. To enhance the adaptability of open-source LLMs, we have created a specialized synthetic dataset utilizing GPT-4, enabling effective fine-tuning under constrained data conditions. Our findings reveal that open-source LLMs, when fine-tuned on this limited and synthetic dataset, demonstrate performance parity with their proprietary counterparts. This presents a massive opportunity for their deployment in real-world healthcare applications. To foster further research and applications in this field, we release both the annotated evaluation dataset along with the fine-tuned LLM -- Trial-LLAMA -- for public use.


In-Context Learning Functions with Varying Number of Minima

arXiv.org Artificial Intelligence

Since at In-Context Learning (ICL), an ability generative LLMs make predictions based on the given that allows them to create predictors from labeled prompt (i.e., the context), there is a natural relationship examples. Few studies have explored the interplay between prompt engineering and ICL (illustrated in Figure between ICL and specific properties of functions 1). The IO prompting paper introduced InstructGPT, a it attempts to approximate. In our study, we use a model that was trained to follow instructions, which was one formal framework to explore ICL and propose a of the first works to popularize ICL. The term was originally new task of approximating functions with varying introduced in the GPT-3 paper (Brown et al., 2020).


Foundation Metrics: Quantifying Effectiveness of Healthcare Conversations powered by Generative AI

arXiv.org Artificial Intelligence

Generative Artificial Intelligence is set to revolutionize healthcare delivery by transforming traditional patient care into a more personalized, efficient, and proactive process. Chatbots, serving as interactive conversational models, will probably drive this patient-centered transformation in healthcare. Through the provision of various services, including diagnosis, personalized lifestyle recommendations, and mental health support, the objective is to substantially augment patient health outcomes, all the while mitigating the workload burden on healthcare providers. The life-critical nature of healthcare applications necessitates establishing a unified and comprehensive set of evaluation metrics for conversational models. Existing evaluation metrics proposed for various generic large language models (LLMs) demonstrate a lack of comprehension regarding medical and health concepts and their significance in promoting patients' well-being. Moreover, these metrics neglect pivotal user-centered aspects, including trust-building, ethics, personalization, empathy, user comprehension, and emotional support. The purpose of this paper is to explore state-of-the-art LLM-based evaluation metrics that are specifically applicable to the assessment of interactive conversational models in healthcare. Subsequently, we present an comprehensive set of evaluation metrics designed to thoroughly assess the performance of healthcare chatbots from an end-user perspective. These metrics encompass an evaluation of language processing abilities, impact on real-world clinical tasks, and effectiveness in user-interactive conversations. Finally, we engage in a discussion concerning the challenges associated with defining and implementing these metrics, with particular emphasis on confounding factors such as the target audience, evaluation methods, and prompt techniques involved in the evaluation process.


An Empirical Evaluation of Prompting Strategies for Large Language Models in Zero-Shot Clinical Natural Language Processing

arXiv.org Artificial Intelligence

Large language models (LLMs) have shown remarkable capabilities in Natural Language Processing (NLP), especially in domains where labeled data is scarce or expensive, such as clinical domain. However, to unlock the clinical knowledge hidden in these LLMs, we need to design effective prompts that can guide them to perform specific clinical NLP tasks without any task-specific training data. This is known as in-context learning, which is an art and science that requires understanding the strengths and weaknesses of different LLMs and prompt engineering approaches. In this paper, we present a comprehensive and systematic experimental study on prompt engineering for five clinical NLP tasks: Clinical Sense Disambiguation, Biomedical Evidence Extraction, Coreference Resolution, Medication Status Extraction, and Medication Attribute Extraction. We assessed the prompts proposed in recent literature, including simple prefix, simple cloze, chain of thought, and anticipatory prompts, and introduced two new types of prompts, namely heuristic prompting and ensemble prompting. We evaluated the performance of these prompts on three state-of-the-art LLMs: GPT-3.5, BARD, and LLAMA2. We also contrasted zero-shot prompting with few-shot prompting, and provide novel insights and guidelines for prompt engineering for LLMs in clinical NLP. To the best of our knowledge, this is one of the first works on the empirical evaluation of different prompt engineering approaches for clinical NLP in this era of generative AI, and we hope that it will inspire and inform future research in this area.


Large Language Models Vote: Prompting for Rare Disease Identification

arXiv.org Artificial Intelligence

The emergence of generative Large Language Models (LLMs) emphasizes the need for accurate and efficient prompting approaches. LLMs are often applied in Few-Shot Learning (FSL) contexts, where tasks are executed with minimal training data. FSL has become popular in many Artificial Intelligence (AI) subdomains, including AI for health. Rare diseases affect a small fraction of the population. Rare disease identification from clinical notes inherently requires FSL techniques due to limited data availability. Manual data collection and annotation is both expensive and time-consuming. In this paper, we propose Models-Vote Prompting (MVP), a flexible prompting approach for improving the performance of LLM queries in FSL settings. MVP works by prompting numerous LLMs to perform the same tasks and then conducting a majority vote on the resulting outputs. This method achieves improved results to any one model in the ensemble on one-shot rare disease identification and classification tasks. We also release a novel rare disease dataset for FSL, available to those who signed the MIMIC-IV Data Use Agreement (DUA). Furthermore, in using MVP, each model is prompted multiple times, substantially increasing the time needed for manual annotation, and to address this, we assess the feasibility of using JSON for automating generative LLM evaluation.