Goto

Collaborating Authors

 Wang, Yanbin


Enhancing Object Detection Accuracy in Underwater Sonar Images through Deep Learning-based Denoising

arXiv.org Artificial Intelligence

Xidian University, China Xidian University, China Jiangxi University of Science and Technology, China Institute of Deep-sea Science and Engineering, China Abstract --Sonar image object detection is crucial for underwater robotics and other applications. However, various types of noise in sonar images can affect the accuracy of object detection. Denoising, as a critical preprocessing step, aims to remove noise while retaining useful information to improve detection accuracy. Although deep learning-based denoising algorithms perform well on optical images, their application to underwater sonar images remains underexplored. This paper systematically evaluates the effectiveness of several deep learning-based denoising algorithms, originally designed for optical images, in the context of underwater sonar image object detection. We apply nine trained denoising models to images from five open-source sonar datasets, each processing different types of noise. We then test the denoised images using four object detection algorithms. The results show that different denoising models have varying effects on detection performance. By combining the strengths of multiple denoising models, the detection results can be optimized, thus more effectively suppressing noise. Additionally, we adopt a multi-frame denoising technique, using different outputs generated by multiple denoising models as multiple frames of the same scene for further processing to enhance detection accuracy. This method, originally designed for optical images, leverages complementary noise-reduction effects. Experimental results show that denoised sonar images improve the performance of object detection algorithms compared to the original sonar images. I NTRODUCTION Underwater sonar imaging plays an indispensable role in marine exploration and various ocean industries, providing valuable insights into underwater environments. Unlike optical imaging, where light propagation is restricted, sonar systems utilize sound waves that travel farther, allowing them to cover larger underwater areas. This makes sonar images an ideal choice for applications such as seabed mapping, underwater object detection, and navigation. However, despite the advantages of sonar imaging, its image quality is often severely compromised by noise, which negatively impacts the accuracy of downstream tasks, such as object detection. In sonar images, noise can originate from various factors, including environmental interference, sensor imperfections, and the inherent characteristics of sound wave propagation Corresponding authors: Tao Xue, Y anbin Wang. in water. Common types of sonar image noise include Gaussian noise, speckle noise, and Poisson noise. Gaussian noise typically arises from random fluctuations in sensor readings or environmental changes. Speckle noise, caused by sound wave scattering, manifests as granular interference, which can obscure object boundaries.


Dynamic Feature Fusion: Combining Global Graph Structures and Local Semantics for Blockchain Fraud Detection

arXiv.org Artificial Intelligence

--The advent of blockchain technology has facilitated the widespread adoption of smart contracts in the financial sector . However, current fraud detection methodologies exhibit limitations in capturing both global structural patterns within transaction networks and local semantic relationships embedded in transaction data. Most existing models focus on either structural information or semantic features individually, leading to suboptimal performance in detecting complex fraud patterns.In this paper, we propose a dynamic feature fusion model that combines graph-based representation learning and semantic feature extraction for blockchain fraud detection. Specifically, we construct global graph representations to model account relationships and extract local contextual features from transaction data. A dynamic multimodal fusion mechanism is introduced to adaptively integrate these features, enabling the model to capture both structural and semantic fraud patterns effectively. We further develop a comprehensive data processing pipeline, including graph construction, temporal feature enhancement, and text preprocessing. Experimental results on large-scale real-world blockchain datasets demonstrate that our method outperforms existing benchmarks across accuracy, F1 score, and recall metrics. This work highlights the importance of integrating structural relationships and semantic similarities for robust fraud detection and offers a scalable solution for securing blockchain systems. LOCKCHAIN technology has developed rapidly in recent years and has triggered far-reaching changes in several fields, especially in the financial industry [1]. However, as the popularity of blockchain applications grows, so does the significant increase in fraudulent behaviors it has brought about, with serious implications for society [2]. Blockchain technology, due to its decentralization and transparency, has become a tool for unscrupulous individuals to exploit, although it provides greater security and efficiency in financial transactions [3]. For example, the application of blockchain technology in the supply chain is seen as an effective means to enhance transparency and traceability, but it also faces a crisis of social trust due to fraudulent behavior [4].