Wang, Yalin
SC-MIL: Sparsely Coded Multiple Instance Learning for Whole Slide Image Classification
Qiu, Peijie, Xiao, Pan, Zhu, Wenhui, Wang, Yalin, Sotiras, Aristeidis
Multiple Instance Learning (MIL) has been widely used in weakly supervised whole slide image (WSI) classification. Typical MIL methods include a feature embedding part that embeds the instances into features via a pre-trained feature extractor and the MIL aggregator that combines instance embeddings into predictions. The current focus has been directed toward improving these parts by refining the feature embeddings through self-supervised pre-training and modeling the correlations between instances separately. In this paper, we proposed a sparsely coded MIL (SC-MIL) that addresses those two aspects at the same time by leveraging sparse dictionary learning. The sparse dictionary learning captures the similarities of instances by expressing them as a sparse linear combination of atoms in an over-complete dictionary. In addition, imposing sparsity help enhance the instance feature embeddings by suppressing irrelevant instances while retaining the most relevant ones. To make the conventional sparse coding algorithm compatible with deep learning, we unrolled it into an SC module by leveraging deep unrolling. The proposed SC module can be incorporated into any existing MIL framework in a plug-and-play manner with an acceptable computation cost. The experimental results on multiple datasets demonstrated that the proposed SC module could substantially boost the performance of state-of-the-art MIL methods. The codes are available at \href{https://github.com/sotiraslab/SCMIL.git}{https://github.com/sotiraslab/SCMIL.git}.
Keypoint-Augmented Self-Supervised Learning for Medical Image Segmentation with Limited Annotation
Yang, Zhangsihao, Ren, Mengwei, Ding, Kaize, Gerig, Guido, Wang, Yalin
Pretraining CNN models (i.e., UNet) through self-supervision has become a powerful approach to facilitate medical image segmentation under low annotation regimes. Recent contrastive learning methods encourage similar global representations when the same image undergoes different transformations, or enforce invariance across different image/patch features that are intrinsically correlated. However, CNN-extracted global and local features are limited in capturing long-range spatial dependencies that are essential in biological anatomy. To this end, we present a keypoint-augmented fusion layer that extracts representations preserving both short- and long-range self-attention. In particular, we augment the CNN feature map at multiple scales by incorporating an additional input that learns long-range spatial self-attention among localized keypoint features. Further, we introduce both global and local self-supervised pretraining for the framework. At the global scale, we obtain global representations from both the bottleneck of the UNet, and by aggregating multiscale keypoint features. These global features are subsequently regularized through image-level contrastive objectives. At the local scale, we define a distance-based criterion to first establish correspondences among keypoints and encourage similarity between their features. Through extensive experiments on both MRI and CT segmentation tasks, we demonstrate the architectural advantages of our proposed method in comparison to both CNN and Transformer-based UNets, when all architectures are trained with randomly initialized weights. With our proposed pretraining strategy, our method further outperforms existing SSL methods by producing more robust self-attention and achieving state-of-the-art segmentation results. The code is available at https://github.com/zshyang/kaf.git.
SFCNeXt: a simple fully convolutional network for effective brain age estimation with small sample size
Fu, Yu, Huang, Yanyan, Dong, Shunjie, Wang, Yalin, Yu, Tianbai, Niu, Meng, Zhuo, Cheng
Deep neural networks (DNN) have been designed to predict the chronological age of a healthy brain from T1-weighted magnetic resonance images (T1 MRIs), and the predicted brain age could serve as a valuable biomarker for the early detection of development-related or aging-related disorders. Recent DNN models for brain age estimations usually rely too much on large sample sizes and complex network structures for multi-stage feature refinement. However, in clinical application scenarios, researchers usually cannot obtain thousands or tens of thousands of MRIs in each data center for thorough training of these complex models. This paper proposes a simple fully convolutional network (SFCNeXt) for brain age estimation in small-sized cohorts with biased age distributions. The SFCNeXt consists of Single Pathway Encoded ConvNeXt (SPEC) and Hybrid Ranking Loss (HRL), aiming to estimate brain ages in a lightweight way with a sufficient exploration of MRI, age, and ranking features of each batch of subjects. Experimental results demonstrate the superiority and efficiency of our approach.
OTRE: Where Optimal Transport Guided Unpaired Image-to-Image Translation Meets Regularization by Enhancing
Zhu, Wenhui, Qiu, Peijie, Dumitrascu, Oana M., Sobczak, Jacob M., Farazi, Mohammad, Yang, Zhangsihao, Nandakumar, Keshav, Wang, Yalin
Non-mydriatic retinal color fundus photography (CFP) is widely available due to the advantage of not requiring pupillary dilation, however, is prone to poor quality due to operators, systemic imperfections, or patient-related causes. Optimal retinal image quality is mandated for accurate medical diagnoses and automated analyses. Herein, we leveraged the Optimal Transport (OT) theory to propose an unpaired image-to-image translation scheme for mapping low-quality retinal CFPs to high-quality counterparts. Furthermore, to improve the flexibility, robustness, and applicability of our image enhancement pipeline in the clinical practice, we generalized a state-of-the-art model-based image reconstruction method, regularization by denoising, by plugging in priors learned by our OT-guided image-to-image translation network. We named it as regularization by enhancing (RE). We validated the integrated framework, OTRE, on three publicly available retinal image datasets by assessing the quality after enhancement and their performance on various downstream tasks, including diabetic retinopathy grading, vessel segmentation, and diabetic lesion segmentation. The experimental results demonstrated the superiority of our proposed framework over some state-of-the-art unsupervised competitors and a state-of-the-art supervised method.
A Surface-Based Federated Chow Test Model for Integrating APOE Status, Tau Deposition Measure, and Hippocampal Surface Morphometry
Wu, Jianfeng, Su, Yi, Chen, Yanxi, Zhu, Wenhui, Reiman, Eric M., Caselli, Richard J., Chen, Kewei, Thompson, Paul M., Wang, Junwen, Wang, Yalin
Background: Alzheimer's disease (AD) is the most common type of age-related dementia, affecting 6.2 million people aged 65 or older according to CDC data. It is commonly agreed that discovering an effective AD diagnosis biomarker could have enormous public health benefits, potentially preventing or delaying up to 40% of dementia cases. Tau neurofibrillary tangles are the primary driver of downstream neurodegeneration and subsequent cognitive impairment in AD, resulting in structural deformations such as hippocampal atrophy that can be observed in magnetic resonance imaging (MRI) scans. Objective: To build a surface-based model to 1) detect differences between APOE subgroups in patterns of tau deposition and hippocampal atrophy, and 2) use the extracted surface-based features to predict cognitive decline. Methods: Using data obtained from different institutions, we develop a surface-based federated Chow test model to study the synergistic effects of APOE, a previously reported significant risk factor of AD, and tau on hippocampal surface morphometry. Results: We illustrate that the APOE-specific morphometry features correlate with AD progression and better predict future AD conversion than other MRI biomarkers. For example, a strong association between atrophy and abnormal tau was identified in hippocampal subregion cornu ammonis 1 (CA1 subfield) and subiculum in e4 homozygote cohort. Conclusion: Our model allows for identifying MRI biomarkers for AD and cognitive decline prediction and may uncover a corner of the neural mechanism of the influence of APOE and tau deposition on hippocampal morphology.
Optimal Transport Guided Unsupervised Learning for Enhancing low-quality Retinal Images
Zhu, Wenhui, Qiu, Peijie, Farazi, Mohammad, Nandakumar, Keshav, Dumitrascu, Oana M., Wang, Yalin
Real-world non-mydriatic retinal fundus photography is prone to artifacts, imperfections and low-quality when certain ocular or systemic co-morbidities exist. Artifacts may result in inaccuracy or ambiguity in clinical diagnoses. In this paper, we proposed a simple but effective end-to-end framework for enhancing poor-quality retinal fundus images. Leveraging the optimal transport theory, we proposed an unpaired image-to-image translation scheme for transporting low-quality images to their high-quality counterparts. We theoretically proved that a Generative Adversarial Networks (GAN) model with a generator and discriminator is sufficient for this task. Furthermore, to mitigate the inconsistency of information between the low-quality images and their enhancements, an information consistency mechanism was proposed to maximally maintain structural consistency (optical discs, blood vessels, lesions) between the source and enhanced domains. Extensive experiments were conducted on the EyeQ dataset to demonstrate the superiority of our proposed method perceptually and quantitatively.
Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape Correspondence
Farazi, Mohammad, Zhu, Wenhui, Yang, Zhangsihao, Wang, Yalin
This paper studies 3D dense shape correspondence, a key shape analysis application in computer vision and graphics. We introduce a novel hybrid geometric deep learning-based model that learns geometrically meaningful and discretization-independent features with a U-Net model as the primary node feature extraction module, followed by a successive spectral-based graph convolutional network. To create a diverse set of filters, we use anisotropic wavelet basis filters, being sensitive to both different directions and band-passes. This filter set overcomes the over-smoothing behavior of conventional graph neural networks. To further improve the model's performance, we add a function that perturbs the feature maps in the last layer ahead of fully connected layers, forcing the network to learn more discriminative features overall. The resulting correspondence maps show state-of-the-art performance on the benchmark datasets based on average geodesic errors and superior robustness to discretization in 3D meshes. Our approach provides new insights and practical solutions to the dense shape correspondence research.
Self-Supervised Equivariant Regularization Reconciles Multiple Instance Learning: Joint Referable Diabetic Retinopathy Classification and Lesion Segmentation
Zhu, Wenhui, Qiu, Peijie, Lepore, Natasha, Dumitrascu, Oana M., Wang, Yalin
Lesion appearance is a crucial clue for medical providers to distinguish referable diabetic retinopathy (rDR) from non-referable DR. Most existing large-scale DR datasets contain only image-level labels rather than pixel-based annotations. This motivates us to develop algorithms to classify rDR and segment lesions via image-level labels. This paper leverages self-supervised equivariant learning and attention-based multi-instance learning (MIL) to tackle this problem. MIL is an effective strategy to differentiate positive and negative instances, helping us discard background regions (negative instances) while localizing lesion regions (positive ones). However, MIL only provides coarse lesion localization and cannot distinguish lesions located across adjacent patches. Conversely, a self-supervised equivariant attention mechanism (SEAM) generates a segmentation-level class activation map (CAM) that can guide patch extraction of lesions more accurately. Our work aims at integrating both methods to improve rDR classification accuracy. We conduct extensive validation experiments on the Eyepacs dataset, achieving an area under the receiver operating characteristic curve (AU ROC) of 0.958, outperforming current state-of-the-art algorithms.
Regularized Wasserstein Means Based on Variational Transportation
Mi, Liang, Zhang, Wen, Wang, Yalin
We raise the problem of regularizing Wasserstein means and propose several terms tailored to tackle different problems. Ourformulation is based on the variational transportation todistribute a sparse discrete measure into the target domain without mass splitting. The resulting sparse representation well captures the desired property of the domain whilemaintaining a small reconstruction error. We demonstrate the scalability and robustness of our method with examples of domain adaptation and skeleton layout.
Dynamically Hierarchy Revolution: DirNet for Compressing Recurrent Neural Network on Mobile Devices
Zhang, Jie, Wang, Xiaolong, Li, Dawei, Wang, Yalin
Recurrent neural networks (RNNs) achieve cutting-edge performance on a variety of problems. However, due to their high computational and memory demands, deploying RNNs on resource constrained mobile devices is a challenging task. To guarantee minimum accuracy loss with higher compression rate and driven by the mobile resource requirement, we introduce a novel model compression approach DirNet based on an optimized fast dictionary learning algorithm, which 1) dynamically mines the dictionary atoms of the projection dictionary matrix within layer to adjust the compression rate 2) adaptively changes the sparsity of sparse codes cross the hierarchical layers. Experimental results on language model and an ASR model trained with a 1000h speech dataset demonstrate that our method significantly outperforms prior approaches. Evaluated on off-the-shelf mobile devices, we are able to reduce the size of original model by eight times with real-time model inference and negligible accuracy loss.