Goto

Collaborating Authors

 Wang, Xueqin


DeepSuM: Deep Sufficient Modality Learning Framework

arXiv.org Artificial Intelligence

Multimodal learning has become a pivotal approach in developing robust learning models with applications spanning multimedia, robotics, large language models, and healthcare. The efficiency of multimodal systems is a critical concern, given the varying costs and resource demands of different modalities. This underscores the necessity for effective modality selection to balance performance gains against resource expenditures. In this study, we propose a novel framework for modality selection that independently learns the representation of each modality. This approach allows for the assessment of each modality's significance within its unique representation space, enabling the development of tailored encoders and facilitating the joint analysis of modalities with distinct characteristics. Our framework aims to enhance the efficiency and effectiveness of multimodal learning by optimizing modality integration and selection.


Distributed Primal-Dual Algorithms: Unification, Connections, and Insights

arXiv.org Machine Learning

We study primal-dual algorithms for general empirical risk minimization problems in distributed settings, focusing on two prominent classes of algorithms. The first class is the communication-efficient distributed dual coordinate ascent (CoCoA), derived from the coordinate ascent method for solving the dual problem. The second class is the alternating direction method of multipliers (ADMM), including consensus ADMM, linearized ADMM, and proximal ADMM. We demonstrate that both classes of algorithms can be transformed into a unified update form that involves only primal and dual variables. This discovery reveals key connections between the two classes of algorithms: CoCoA can be interpreted as a special case of proximal ADMM for solving the dual problem, while consensus ADMM is closely related to a proximal ADMM algorithm. This discovery provides the insight that by adjusting the augmented Lagrangian parameter, we can easily enable the ADMM variants to outperform the CoCoA variants. We further explore linearized versions of ADMM and analyze the effects of tuning parameters on these ADMM variants in the distributed setting. Our theoretical findings are supported by extensive simulation studies and real-world data analysis.


Sparsity-Constraint Optimization via Splicing Iteration

arXiv.org Machine Learning

Sparsity-constraint optimization has wide applicability in signal processing, statistics, and machine learning. Existing fast algorithms must burdensomely tune parameters, such as the step size or the implementation of precise stop criteria, which may be challenging to determine in practice. To address this issue, we develop an algorithm named Sparsity-Constraint Optimization via sPlicing itEration (SCOPE) to optimize nonlinear differential objective functions with strong convexity and smoothness in low dimensional subspaces. Algorithmically, the SCOPE algorithm converges effectively without tuning parameters. Theoretically, SCOPE has a linear convergence rate and converges to a solution that recovers the true support set when it correctly specifies the sparsity. We also develop parallel theoretical results without restricted-isometry-property-type conditions. We apply SCOPE's versatility and power to solve sparse quadratic optimization, learn sparse classifiers, and recover sparse Markov networks for binary variables. The numerical results on these specific tasks reveal that SCOPE perfectly identifies the true support set with a 10--1000 speedup over the standard exact solver, confirming SCOPE's algorithmic and theoretical merits. Our open-source Python package skscope based on C++ implementation is publicly available on GitHub, reaching a ten-fold speedup on the competing convex relaxation methods implemented by the cvxpy library.


skscope: Fast Sparsity-Constrained Optimization in Python

arXiv.org Machine Learning

Applying iterative solvers on sparsity-constrained optimization (SCO) requires tedious mathematical deduction and careful programming/debugging that hinders these solvers' broad impact. In the paper, the library skscope is introduced to overcome such an obstacle. With skscope, users can solve the SCO by just programming the objective function. The convenience of skscope is demonstrated through two examples in the paper, where sparse linear regression and trend filtering are addressed with just four lines of code. More importantly, skscope's efficient implementation allows state-of-the-art solvers to quickly attain the sparse solution regardless of the high dimensionality of parameter space. Numerical experiments reveal the available solvers in skscope can achieve up to 80x speedup on the competing relaxation solutions obtained via the benchmarked convex solver.


The impact of spatio-temporal travel distance on epidemics using an interpretable attention-based sequence-to-sequence model

arXiv.org Artificial Intelligence

Amidst the COVID-19 pandemic, travel restrictions have emerged as crucial interventions for mitigating the spread of the virus. In this study, we enhance the predictive capabilities of our model, Sequence-to-Sequence Epidemic Attention Network (S2SEA-Net), by incorporating an attention module, allowing us to assess the impact of distinct classes of travel distances on epidemic dynamics. Furthermore, our model provides forecasts for new confirmed cases and deaths. To achieve this, we leverage daily data on population movement across various travel distance categories, coupled with county-level epidemic data in the United States. Our findings illuminate a compelling relationship between the volume of travelers at different distance ranges and the trajectories of COVID-19. Notably, a discernible spatial pattern emerges with respect to these travel distance categories on a national scale. We unveil the geographical variations in the influence of population movement at different travel distances on the dynamics of epidemic spread. This will contribute to the formulation of strategies for future epidemic prevention and public health policies.


A Consistent and Scalable Algorithm for Best Subset Selection in Single Index Models

arXiv.org Machine Learning

Analysis of high-dimensional data has led to increased interest in both single index models (SIMs) and best subset selection. SIMs provide an interpretable and flexible modeling framework for high-dimensional data, while best subset selection aims to find a sparse model from a large set of predictors. However, best subset selection in high-dimensional models is known to be computationally intractable. Existing methods tend to relax the selection, but do not yield the best subset solution. In this paper, we directly tackle the intractability by proposing the first provably scalable algorithm for best subset selection in high-dimensional SIMs. Our algorithmic solution enjoys the subset selection consistency and has the oracle property with a high probability. The algorithm comprises a generalized information criterion to determine the support size of the regression coefficients, eliminating the model selection tuning. Moreover, our method does not assume an error distribution or a specific link function and hence is flexible to apply. Extensive simulation results demonstrate that our method is not only computationally efficient but also able to exactly recover the best subset in various settings (e.g., linear regression, Poisson regression, heteroscedastic models).


Best-Subset Selection in Generalized Linear Models: A Fast and Consistent Algorithm via Splicing Technique

arXiv.org Artificial Intelligence

In high-dimensional generalized linear models, it is crucial to identify a sparse model that adequately accounts for response variation. Although the best subset section has been widely regarded as the Holy Grail of problems of this type, achieving either computational efficiency or statistical guarantees is challenging. In this article, we intend to surmount this obstacle by utilizing a fast algorithm to select the best subset with high certainty. We proposed and illustrated an algorithm for best subset recovery in regularity conditions. Under mild conditions, the computational complexity of our algorithm scales polynomially with sample size and dimension. In addition to demonstrating the statistical properties of our method, extensive numerical experiments reveal that it outperforms existing methods for variable selection and coefficient estimation. The runtime analysis shows that our implementation achieves approximately a fourfold speedup compared to popular variable selection toolkits like glmnet and ncvreg.


Simultaneous Best Subset Selection and Dimension Reduction via Primal-Dual Iterations

arXiv.org Artificial Intelligence

Sparse reduced rank regression is an essential statistical learning method. In the contemporary literature, estimation is typically formulated as a nonconvex optimization that often yields to a local optimum in numerical computation. Yet, their theoretical analysis is always centered on the global optimum, resulting in a discrepancy between the statistical guarantee and the numerical computation. In this research, we offer a new algorithm to address the problem and establish an almost optimal rate for the algorithmic solution. We also demonstrate that the algorithm achieves the estimation with a polynomial number of iterations. In addition, we present a generalized information criterion to simultaneously ensure the consistency of support set recovery and rank estimation. Under the proposed criterion, we show that our algorithm can achieve the oracle reduced rank estimation with a significant probability. The numerical studies and an application in the ovarian cancer genetic data demonstrate the effectiveness and scalability of our approach.


Interpreting and predicting the economy flows: A time-varying parameter global vector autoregressive integrated the machine learning model

arXiv.org Machine Learning

The paper proposes a time-varying parameter global vector autoregressive (TVP-GVAR) framework for predicting and analysing developed region economic variables. We want to provide an easily accessible approach for the economy application settings, where a variety of machine learning models can be incorporated for out-of-sample prediction. The LASSO-type technique for numerically efficient model selection of mean squared errors (MSEs) is selected. We show the convincing in-sample performance of our proposed model in all economic variables and relatively high precision out-of-sample predictions with different-frequency economic inputs. Furthermore, the time-varying orthogonal impulse responses provide novel insights into the connectedness of economic variables at critical time points across developed regions. We also derive the corresponding asymptotic bands (the confidence intervals) for orthogonal impulse responses function under standard assumptions.


abess: A Fast Best Subset Selection Library in Python and R

arXiv.org Machine Learning

We introduce a new library named abess that implements a unified framework of best-subset selection for solving diverse machine learning problems, e.g., linear regression, classification, and principal component analysis. Particularly, the abess certifiably gets the optimal solution within polynomial times under the linear model. Our efficient implementation allows abess to attain the solution of best-subset selection problems as fast as or even 100x faster than existing competing variable (model) selection toolboxes. Furthermore, it supports common variants like best group subset selection and $\ell_2$ regularized best-subset selection. The core of the library is programmed in C++. For ease of use, a Python library is designed for conveniently integrating with scikit-learn, and it can be installed from the Python library Index. In addition, a user-friendly R library is available at the Comprehensive R Archive Network. The source code is available at: https://github.com/abess-team/abess.