Goto

Collaborating Authors

 Wang, Xinrui


Filter, Obstruct and Dilute: Defending Against Backdoor Attacks on Semi-Supervised Learning

arXiv.org Artificial Intelligence

Recent studies have verified that semi-supervised learning (SSL) is vulnerable to data poisoning backdoor attacks. Even a tiny fraction of contaminated training data is sufficient for adversaries to manipulate up to 90\% of the test outputs in existing SSL methods. Given the emerging threat of backdoor attacks designed for SSL, this work aims to protect SSL against such risks, marking it as one of the few known efforts in this area. Specifically, we begin by identifying that the spurious correlations between the backdoor triggers and the target class implanted by adversaries are the primary cause of manipulated model predictions during the test phase. To disrupt these correlations, we utilize three key techniques: Gaussian Filter, complementary learning and trigger mix-up, which collectively filter, obstruct and dilute the influence of backdoor attacks in both data pre-processing and feature learning. Experimental results demonstrate that our proposed method, Backdoor Invalidator (BI), significantly reduces the average attack success rate from 84.7\% to 1.8\% across different state-of-the-art backdoor attacks. It is also worth mentioning that BI does not sacrifice accuracy on clean data and is supported by a theoretical guarantee of its generalization capability.


Forgetting, Ignorance or Myopia: Revisiting Key Challenges in Online Continual Learning

arXiv.org Artificial Intelligence

Online continual learning requires the models to learn from constant, endless streams of data. While significant efforts have been made in this field, most were focused on mitigating the catastrophic forgetting issue to achieve better classification ability, at the cost of a much heavier training workload. They overlooked that in real-world scenarios, e.g., in high-speed data stream environments, data do not pause to accommodate slow models. In this paper, we emphasize that model throughput -- defined as the maximum number of training samples that a model can process within a unit of time -- is equally important. It directly limits how much data a model can utilize and presents a challenging dilemma for current methods. With this understanding, we revisit key challenges in OCL from both empirical and theoretical perspectives, highlighting two critical issues beyond the well-documented catastrophic forgetting: Model's ignorance: the single-pass nature of OCL challenges models to learn effective features within constrained training time and storage capacity, leading to a trade-off between effective learning and model throughput; Model's myopia: the local learning nature of OCL on the current task leads the model to adopt overly simplified, task-specific features and excessively sparse classifier, resulting in the gap between the optimal solution for the current task and the global objective. To tackle these issues, we propose the Non-sparse Classifier Evolution framework (NsCE) to facilitate effective global discriminative feature learning with minimal time cost. NsCE integrates non-sparse maximum separation regularization and targeted experience replay techniques with the help of pre-trained models, enabling rapid acquisition of new globally discriminative features.


Exploring CausalWorld: Enhancing robotic manipulation via knowledge transfer and curriculum learning

arXiv.org Artificial Intelligence

This study explores a learning-based tri-finger robotic arm manipulating task, which requires complex movements and coordination among the fingers. By employing reinforcement learning, we train an agent to acquire the necessary skills for proficient manipulation. To enhance the efficiency and effectiveness of the learning process, two knowledge transfer strategies, fine-tuning and curriculum learning, were utilized within the soft actor-critic architecture. Fine-tuning allows the agent to leverage pre-trained knowledge and adapt it to new tasks. Several variations like model transfer, policy transfer, and across-task transfer were implemented and evaluated. To eliminate the need for pretraining, curriculum learning decomposes the advanced task into simpler, progressive stages, mirroring how humans learn. The number of learning stages, the context of the sub-tasks, and the transition timing were found to be the critical design parameters. The key factors of two learning strategies and corresponding effects were explored in context-aware and context-unaware scenarios, enabling us to identify the scenarios where the methods demonstrate optimal performance, derive conclusive insights, and contribute to a broader range of learning-based engineering applications.


Beyond Myopia: Learning from Positive and Unlabeled Data through Holistic Predictive Trends

arXiv.org Artificial Intelligence

Learning binary classifiers from positive and unlabeled data (PUL) is vital in many real-world applications, especially when verifying negative examples is difficult. Despite the impressive empirical performance of recent PUL methods, challenges like accumulated errors and increased estimation bias persist due to the absence of negative labels. In this paper, we unveil an intriguing yet long-overlooked observation in PUL: \textit{resampling the positive data in each training iteration to ensure a balanced distribution between positive and unlabeled examples results in strong early-stage performance. Furthermore, predictive trends for positive and negative classes display distinctly different patterns.} Specifically, the scores (output probability) of unlabeled negative examples consistently decrease, while those of unlabeled positive examples show largely chaotic trends. Instead of focusing on classification within individual time frames, we innovatively adopt a holistic approach, interpreting the scores of each example as a temporal point process (TPP). This reformulates the core problem of PUL as recognizing trends in these scores. We then propose a novel TPP-inspired measure for trend detection and prove its asymptotic unbiasedness in predicting changes. Notably, our method accomplishes PUL without requiring additional parameter tuning or prior assumptions, offering an alternative perspective for tackling this problem. Extensive experiments verify the superiority of our method, particularly in a highly imbalanced real-world setting, where it achieves improvements of up to $11.3\%$ in key metrics. The code is available at \href{https://github.com/wxr99/HolisticPU}{https://github.com/wxr99/HolisticPU}.


Harnessing the Power of David against Goliath: Exploring Instruction Data Generation without Using Closed-Source Models

arXiv.org Artificial Intelligence

Instruction tuning is instrumental in enabling Large Language Models~(LLMs) to follow user instructions to complete various open-domain tasks. The success of instruction tuning depends on the availability of high-quality instruction data. Owing to the exorbitant cost and substandard quality of human annotation, recent works have been deeply engaged in the exploration of the utilization of powerful closed-source models to generate instruction data automatically. However, these methods carry potential risks arising from the usage requirements of powerful closed-source models, which strictly forbid the utilization of their outputs to develop machine learning models. To deal with this problem, in this work, we explore alternative approaches to generate high-quality instruction data that do not rely on closed-source models. Our exploration includes an investigation of various existing instruction generation methods, culminating in the integration of the most efficient variant with two novel strategies to enhance the quality further. Evaluation results from two benchmarks and the GPT-4 model demonstrate the effectiveness of our generated instruction data, which can outperform Alpaca, a method reliant on closed-source models. We hope that more progress can be achieved in generating high-quality instruction data without using closed-source models.


Unlocking the Power of Open Set : A New Perspective for Open-set Noisy Label Learning

arXiv.org Artificial Intelligence

Learning from noisy data has attracted much attention, where most methods focus on closed-set label noise. However, a more common scenario in the real world is the presence of both open-set and closed-set noise. Existing methods typically identify and handle these two types of label noise separately by designing a specific strategy for each type. However, in many real-world scenarios, it would be challenging to identify open-set examples, especially when the dataset has been severely corrupted. Unlike the previous works, we explore how models behave when faced open-set examples, and find that a part of open-set examples gradually get integrated into certain known classes, which is beneficial for the seperation among known classes. Motivated by the phenomenon, in this paper, we propose a novel two-step contrastive learning method called CECL, which aims to deal with both types of label noise by exploiting the useful information of open-set examples. Specifically, we incorporate some open-set examples into closed-set classes to enhance performance while treating others as delimiters to improve representative ability. Extensive experiments on synthetic and real-world datasets with diverse label noise demonstrate that CECL can outperform state-of-the-art methods.


Pushing One Pair of Labels Apart Each Time in Multi-Label Learning: From Single Positive to Full Labels

arXiv.org Artificial Intelligence

In Multi-Label Learning (MLL), it is extremely challenging to accurately annotate every appearing object due to expensive costs and limited knowledge. When facing such a challenge, a more practical and cheaper alternative should be Single Positive Multi-Label Learning (SPMLL), where only one positive label needs to be provided per sample. Existing SPMLL methods usually assume unknown labels as negatives, which inevitably introduces false negatives as noisy labels. More seriously, Binary Cross Entropy (BCE) loss is often used for training, which is notoriously not robust to noisy labels. To mitigate this issue, we customize an objective function for SPMLL by pushing only one pair of labels apart each time to prevent the domination of negative labels, which is the main culprit of fitting noisy labels in SPMLL. To further combat such noisy labels, we explore the high-rankness of label matrix, which can also push apart different labels. By directly extending from SPMLL to MLL with full labels, a unified loss applicable to both settings is derived. Experiments on real datasets demonstrate that the proposed loss not only performs more robustly to noisy labels for SPMLL but also works well for full labels. Besides, we empirically discover that high-rankness can mitigate the dramatic performance drop in SPMLL. Most surprisingly, even without any regularization or fine-tuned label correction, only adopting our loss defeats state-of-the-art SPMLL methods on CUB, a dataset that severely lacks labels.


Adai: Separating the Effects of Adaptive Learning Rate and Momentum Inertia

arXiv.org Machine Learning

Adaptive Momentum Estimation (Adam), which combines Adaptive Learning Rate and Momentum, is the most popular stochastic optimizer for accelerating training of deep neural networks. But Adam often generalizes significantly worse than Stochastic Gradient Descent (SGD). It is still mathematically unclear how Adaptive Learning Rate and Momentum affect saddle-point escaping and minima selection. Based on the diffusion theoretical framework, we decouple the effects of Adaptive Learning Rate and Momentum on saddle-point escaping and minima selection. We prove that Adaptive Learning Rate can escape saddle points efficiently, but cannot select flat minima as SGD does. In contrast, Momentum provides a momentum drift effect to help passing through saddle points, and almost does not affect flat minima selection. This mathematically explains why SGD (with Momentum) generalizes better, while Adam generalizes worse but converges faster. We design a novel adaptive optimizer named Adaptive Inertia Estimation (Adai), which uses parameter-wise adaptive inertia to accelerate training and provably favors flat minima as much as SGD. Our real-world experiments demonstrate that Adai can significantly outperform SGD and existing Adam variants.