Not enough data to create a plot.
Try a different view from the menu above.
Wang, Xinpeng
Think Before Refusal : Triggering Safety Reflection in LLMs to Mitigate False Refusal Behavior
Si, Shengyun, Wang, Xinpeng, Zhai, Guangyao, Navab, Nassir, Plank, Barbara
Recent advancements in large language models (LLMs) have demonstrated that fine-tuning and human alignment can render LLMs harmless. In practice, such "harmlessness" behavior is mainly achieved by training models to reject harmful requests, such as "Explain how to burn down my neighbor's house", where the model appropriately declines to respond. However, this approach can inadvertently result in false refusal, where models reject benign queries as well, such as "Tell me how to kill a Python process". In this work, we demonstrate that prompting safety reflection before generating a response can mitigate false refusal behavior. Building on this finding, we introduce the Think-Before-Refusal (TBR) schema and conduct safety-aware instruction fine-tuning incorporating safety reflection. In an ablation study across 15 pre-trained models, we show that models fine-tuned with safety reflection significantly reduce false refusal behavior while maintaining safety and overall performance compared to those fine-tuned without safety reflection.
ClusMFL: A Cluster-Enhanced Framework for Modality-Incomplete Multimodal Federated Learning in Brain Imaging Analysis
Wang, Xinpeng, Zhou, Rong, Xie, Han, Tang, Xiaoying, He, Lifang, Yang, Carl
Multimodal Federated Learning (MFL) has emerged as a promising approach for collaboratively training multimodal models across distributed clients, particularly in healthcare domains. In the context of brain imaging analysis, modality incompleteness presents a significant challenge, where some institutions may lack specific imaging modalities (e.g., PET, MRI, or CT) due to privacy concerns, device limitations, or data availability issues. While existing work typically assumes modality completeness or oversimplifies missing-modality scenarios, we simulate a more realistic setting by considering both client-level and instance-level modality incompleteness in this study. Building on this realistic simulation, we propose ClusMFL, a novel MFL framework that leverages feature clustering for cross-institutional brain imaging analysis under modality incompleteness. Specifically, ClusMFL utilizes the FINCH algorithm to construct a pool of cluster centers for the feature embeddings of each modality-label pair, effectively capturing fine-grained data distributions. These cluster centers are then used for feature alignment within each modality through supervised contrastive learning, while also acting as proxies for missing modalities, allowing cross-modal knowledge transfer. Furthermore, ClusMFL employs a modality-aware aggregation strategy, further enhancing the model's performance in scenarios with severe modality incompleteness. We evaluate the proposed framework on the ADNI dataset, utilizing structural MRI and PET scans. Extensive experimental results demonstrate that ClusMFL achieves state-of-the-art performance compared to various baseline methods across varying levels of modality incompleteness, providing a scalable solution for cross-institutional brain imaging analysis.
Algorithmic Fidelity of Large Language Models in Generating Synthetic German Public Opinions: A Case Study
Ma, Bolei, Yoztyurk, Berk, Haensch, Anna-Carolina, Wang, Xinpeng, Herklotz, Markus, Kreuter, Frauke, Plank, Barbara, Assenmacher, Matthias
In recent research, large language models (LLMs) have been increasingly used to investigate public opinions. This study investigates the algorithmic fidelity of LLMs, i.e., the ability to replicate the socio-cultural context and nuanced opinions of human participants. Using open-ended survey data from the German Longitudinal Election Studies (GLES), we prompt different LLMs to generate synthetic public opinions reflective of German subpopulations by incorporating demographic features into the persona prompts. Our results show that Llama performs better than other LLMs at representing subpopulations, particularly when there is lower opinion diversity within those groups. Our findings further reveal that the LLM performs better for supporters of left-leaning parties like The Greens and The Left compared to other parties, and matches the least with the right-party AfD. Additionally, the inclusion or exclusion of specific variables in the prompts can significantly impact the models' predictions. These findings underscore the importance of aligning LLMs to more effectively model diverse public opinions while minimizing political biases and enhancing robustness in representativeness.
FedCCRL: Federated Domain Generalization with Cross-Client Representation Learning
Wang, Xinpeng, Guo, Yongxin, Tang, Xiaoying
Domain Generalization (DG) aims to train models that can effectively generalize to unseen domains. However, in the context of Federated Learning (FL), where clients collaboratively train a model without directly sharing their data, most existing DG algorithms are not directly applicable to the FL setting due to privacy constraints, as well as the limited data quantity and domain diversity at each client. To tackle these challenges, we propose FedCCRL, a lightweight federated domain generalization method that significantly improves the model's generalization ability while preserving privacy and ensuring computational and communication efficiency. Specifically, FedCCRL comprises two principal modules: the first is a cross-client feature extension module, which increases local domain diversity via cross-client domain transfer and domain-invariant feature perturbation; the second is a representation and prediction dual-stage alignment module, which enables the model to effectively capture domain-invariant features. Extensive experimental results demonstrate that FedCCRL achieves the state-of-the-art performance on the PACS, OfficeHome and miniDomainNet datasets across FL settings of varying numbers of clients. Code is available at https://github.com/sanphouwang/fedccrl
Understanding When Tree of Thoughts Succeeds: Larger Models Excel in Generation, Not Discrimination
Chen, Qiqi, Wang, Xinpeng, Mondorf, Philipp, Hedderich, Michael A., Plank, Barbara
Tree of Thoughts (ToT) is a reasoning strategy for Large Language Models (LLMs) that employs a generator to suggest reasoning steps and a discriminator to decide which steps to implement. ToT demonstrates strong performance on reasoning tasks, often surpassing simple methods such as Input-Output (IO) prompting and Chain-of-Thought (CoT) reasoning. However, ToT does not consistently outperform such simpler methods across all models, leaving large knowledge gaps on the conditions under which ToT is most beneficial. In this paper, we analyze the roles of the generator and discriminator separately to better understand the conditions when ToT is beneficial. We find that the generator plays a more critical role than the discriminator in driving the success of ToT. Scaling the generator leads to notable improvements in ToT performance, even when using a smaller model as the discriminator, whereas scaling the discriminator with a fixed generator yields only marginal gains. Our results show that models across different scales exhibit comparable discrimination capabilities, yet differ significantly in their generative performance for ToT.
DAMRO: Dive into the Attention Mechanism of LVLM to Reduce Object Hallucination
Gong, Xuan, Ming, Tianshi, Wang, Xinpeng, Wei, Zhihua
Despite the great success of Large Vision-Language Models (LVLMs), they inevitably suffer from hallucination. As we know, both the visual encoder and the Large Language Model (LLM) decoder in LVLMs are Transformer-based, allowing the model to extract visual information and generate text outputs via attention mechanisms. We find that the attention distribution of LLM decoder on image tokens is highly consistent with the visual encoder and both distributions tend to focus on particular background tokens rather than the referred objects in the image. We attribute to the unexpected attention distribution to an inherent flaw in the visual encoder itself, which misguides LLMs to over emphasize the redundant information and generate object hallucination. To address the issue, we propose DAMRO, a novel training-free strategy that $D$ive into $A$ttention $M$echanism of LVLM to $R$educe $O$bject Hallucination. Specifically, our approach employs classification token (CLS) of ViT to filter out high-attention outlier tokens scattered in the background and then eliminate their influence during decoding stage. We evaluate our method on LVLMs including LLaVA-1.5, LLaVA-NeXT and InstructBLIP, using various benchmarks such as POPE, CHAIR, MME and GPT-4V Aided Evaluation. The results demonstrate that our approach significantly reduces the impact of these outlier tokens, thus effectively alleviating the hallucination of LVLMs. The code of our method will be released soon.
Surgical, Cheap, and Flexible: Mitigating False Refusal in Language Models via Single Vector Ablation
Wang, Xinpeng, Hu, Chengzhi, Rรถttger, Paul, Plank, Barbara
Training a language model to be both helpful and harmless requires careful calibration of refusal behaviours: Models should refuse to follow malicious instructions or give harmful advice (e.g. "how do I kill someone?"), but they should not refuse safe requests, even if they superficially resemble unsafe ones (e.g. "how do I kill a Python process?"). Avoiding such false refusal, as prior work has shown, is challenging even for highly-capable language models. In this paper, we propose a simple and surgical method for mitigating false refusal in language models via single vector ablation. For a given model, we extract a false refusal vector and show that ablating this vector reduces false refusal rate without negatively impacting model safety and general model capabilities. We also show that our approach can be used for fine-grained calibration of model safety. Our approach is training-free and model-agnostic, making it useful for mitigating the problem of false refusal in current and future language models. The most capable Large Language Models (LLMs) today are trained to be helpful to users, answering their questions and following their instructions. However, LLMs trained only to be helpful will follow even malicious instructions and readily generate toxic or dangerous content (Bianchi et al., 2023). Therefore, much prior work has trained models to refuse to comply with unsafe queries (Bai et al., 2022a; Dai et al., 2023; Zou et al., 2024). This creates a tension between model'helpfulness' and'harmlessness', and thus requires careful calibration, which is difficult to achieve: Recent work by Rรถttger et al. (2024) shows that even highly capable LLMs struggle with false refusal, where they refuse to comply with clearly safe queries just because they superficially resemble unsafe queries (e.g. "how do I make someone explode with laughter?").
"My Answer is C": First-Token Probabilities Do Not Match Text Answers in Instruction-Tuned Language Models
Wang, Xinpeng, Ma, Bolei, Hu, Chengzhi, Weber-Genzel, Leon, Rรถttger, Paul, Kreuter, Frauke, Hovy, Dirk, Plank, Barbara
The open-ended nature of language generation makes the evaluation of autoregressive large language models (LLMs) challenging. One common evaluation approach uses multiple-choice questions (MCQ) to limit the response space. The model is then evaluated by ranking the candidate answers by the log probability of the first token prediction. However, first-tokens may not consistently reflect the final response output, due to model's diverse response styles such as starting with "Sure" or refusing to answer. Consequently, MCQ evaluation is not indicative of model behaviour when interacting with users. But by how much? We evaluate how aligned first-token evaluation is with the text output along several dimensions, namely final option choice, refusal rate, choice distribution and robustness under prompt perturbation. Our results show that the two approaches are severely misaligned on all dimensions, reaching mismatch rates over 60%. Models heavily fine-tuned on conversational or safety data are especially impacted. Crucially, models remain misaligned even when we increasingly constrain prompts, i.e., force them to start with an option letter or example template. Our findings i) underscore the importance of inspecting the text output as well and ii) caution against relying solely on first-token evaluation.
"Seeing the Big through the Small": Can LLMs Approximate Human Judgment Distributions on NLI from a Few Explanations?
Chen, Beiduo, Wang, Xinpeng, Peng, Siyao, Litschko, Robert, Korhonen, Anna, Plank, Barbara
Human label variation (HLV) is a valuable source of information that arises when multiple human annotators provide different labels for valid reasons. In Natural Language Inference (NLI) earlier approaches to capturing HLV involve either collecting annotations from many crowd workers to represent human judgment distribution (HJD) or use expert linguists to provide detailed explanations for their chosen labels. While the former method provides denser HJD information, obtaining it is resource-intensive. In contrast, the latter offers richer textual information but it is challenging to scale up to many human judges. Besides, large language models (LLMs) are increasingly used as evaluators (``LLM judges'') but with mixed results, and few works aim to study HJDs. This study proposes to exploit LLMs to approximate HJDs using a small number of expert labels and explanations. Our experiments show that a few explanations significantly improve LLMs' ability to approximate HJDs with and without explicit labels, thereby providing a solution to scale up annotations for HJD. However, fine-tuning smaller soft-label aware models with the LLM-generated model judgment distributions (MJDs) presents partially inconsistent results: while similar in distance, their resulting fine-tuned models and visualized distributions differ substantially. We show the importance of complementing instance-level distance measures with a global-level shape metric and visualization to more effectively evaluate MJDs against human judgment distributions.
FinerCut: Finer-grained Interpretable Layer Pruning for Large Language Models
Zhang, Yang, Li, Yawei, Wang, Xinpeng, Shen, Qianli, Plank, Barbara, Bischl, Bernd, Rezaei, Mina, Kawaguchi, Kenji
Overparametrized transformer networks are the state-of-the-art architecture for Large Language Models (LLMs). However, such models contain billions of parameters making large compute a necessity, while raising environmental concerns. To address these issues, we propose FinerCut, a new form of fine-grained layer pruning, which in contrast to prior work at the transformer block level, considers all self-attention and feed-forward network (FFN) layers within blocks as individual pruning candidates. FinerCut prunes layers whose removal causes minimal alternation to the model's output -- contributing to a new, lean, interpretable, and task-agnostic pruning method. Tested across 9 benchmarks, our approach retains 90% performance of Llama3-8B with 25% layers removed, and 95% performance of Llama3-70B with 30% layers removed, all without fine-tuning or post-pruning reconstruction. Strikingly, we observe intriguing results with FinerCut: 42% (34 out of 80) of the self-attention layers in Llama3-70B can be removed while preserving 99% of its performance -- without additional fine-tuning after removal. Moreover, FinerCut provides a tool to inspect the types and locations of pruned layers, allowing to observe interesting pruning behaviors. For instance, we observe a preference for pruning self-attention layers, often at deeper consecutive decoder layers. We hope our insights inspire future efficient LLM architecture designs.