Plotting

 Wang, Ximei


Long-Sequence Recommendation Models Need Decoupled Embeddings

arXiv.org Artificial Intelligence

Lifelong user behavior sequences, comprising up to tens of thousands of history behaviors, are crucial for capturing user interests and predicting user responses in modern recommendation systems. A two-stage paradigm is typically adopted to handle these long sequences: a few relevant behaviors are first searched from the original long sequences via an attention mechanism in the first stage and then aggregated with the target item to construct a discriminative representation for prediction in the second stage. In this work, we identify and characterize, for the first time, a neglected deficiency in existing long-sequence recommendation models: a single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes. Initial attempts to address this issue using linear projections -- a technique borrowed from language processing -- proved ineffective, shedding light on the unique challenges of recommendation models. To overcome this, we propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are initialized and learned separately to fully decouple attention and representation. Extensive experiments and analysis demonstrate that DARE provides more accurate search of correlated behaviors and outperforms baselines with AUC gains up to 0.9% on public datasets and notable online system improvements. Furthermore, decoupling embedding spaces allows us to reduce the attention embedding dimension and accelerate the search procedure by 50% without significant performance impact, enabling more efficient, high-performance online serving.


Ads Recommendation in a Collapsed and Entangled World

arXiv.org Artificial Intelligence

We present Tencent's ads recommendation system and examine the challenges and practices of learning appropriate recommendation representations. Our study begins by showcasing our approaches to preserving prior knowledge when encoding features of diverse types into embedding representations. We specifically address sequence features, numeric features, and pre-trained embedding features. Subsequently, we delve into two crucial challenges related to feature representation: the dimensional collapse of embeddings and the interest entanglement across different tasks or scenarios. We propose several practical approaches to address these challenges that result in robust and disentangled recommendation representations. We then explore several training techniques to facilitate model optimization, reduce bias, and enhance exploration. Additionally, we introduce three analysis tools that enable us to study feature correlation, dimensional collapse, and interest entanglement. This work builds upon the continuous efforts of Tencent's ads recommendation team over the past decade. It summarizes general design principles and presents a series of readily applicable solutions and analysis tools. The reported performance is based on our online advertising platform, which handles hundreds of billions of requests daily and serves millions of ads to billions of users.


STEM: Unleashing the Power of Embeddings for Multi-task Recommendation

arXiv.org Artificial Intelligence

Multi-task learning (MTL) has gained significant popularity in recommender systems as it enables simultaneous optimization of multiple objectives. A key challenge in MTL is negative transfer, but existing studies explored negative transfer on all samples, overlooking the inherent complexities within them. We split the samples according to the relative amount of positive feedback among tasks. Surprisingly, negative transfer still occurs in existing MTL methods on samples that receive comparable feedback across tasks. Existing work commonly employs a shared-embedding paradigm, limiting the ability of modeling diverse user preferences on different tasks. In this paper, we introduce a novel Shared and Task-specific EMbeddings (STEM) paradigm that aims to incorporate both shared and task-specific embeddings to effectively capture task-specific user preferences. Under this paradigm, we propose a simple model STEM-Net, which is equipped with an All Forward Task-specific Backward gating network to facilitate the learning of task-specific embeddings and direct knowledge transfer across tasks. Remarkably, STEM-Net demonstrates exceptional performance on comparable samples, achieving positive transfer. Comprehensive evaluation on three public MTL recommendation datasets demonstrates that STEM-Net outperforms state-of-the-art models by a substantial margin. Our code is released at https://github.com/LiangcaiSu/STEM.


ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning

arXiv.org Artificial Intelligence

Auxiliary-Task Learning (ATL) aims to improve the performance of the target task by leveraging the knowledge obtained from related tasks. Occasionally, learning multiple tasks simultaneously results in lower accuracy than learning only the target task, which is known as negative transfer. This problem is often attributed to the gradient conflicts among tasks, and is frequently tackled by coordinating the task gradients in previous works. However, these optimization-based methods largely overlook the auxiliary-target generalization capability. To better understand the root cause of negative transfer, we experimentally investigate it from both optimization and generalization perspectives. Based on our findings, we introduce ForkMerge, a novel approach that periodically forks the model into multiple branches, automatically searches the varying task weights by minimizing target validation errors, and dynamically merges all branches to filter out detrimental task-parameter updates. On a series of auxiliary-task learning benchmarks, ForkMerge outperforms existing methods and effectively mitigates negative transfer.


Decoupled Training: Return of Frustratingly Easy Multi-Domain Learning

arXiv.org Artificial Intelligence

Multi-domain learning (MDL) aims to train a model with minimal average risk across multiple overlapping but non-identical domains. To tackle the challenges of dataset bias and domain domination, numerous MDL approaches have been proposed from the perspectives of seeking commonalities by aligning distributions to reduce domain gap or reserving differences by implementing domain-specific towers, gates, and even experts. MDL models are becoming more and more complex with sophisticated network architectures or loss functions, introducing extra parameters and enlarging computation costs. In this paper, we propose a frustratingly easy and hyperparameter-free multi-domain learning method named Decoupled Training(D-Train). D-Train is a tri-phase general-to-specific training strategy that first pre-trains on all domains to warm up a root model, then post-trains on each domain by splitting into multi heads, and finally fine-tunes the heads by fixing the backbone, enabling decouple training to achieve domain independence. Despite its extraordinary simplicity and efficiency, D-Train performs remarkably well in extensive evaluations of various datasets from standard benchmarks to applications of satellite imagery and recommender systems.


CLIPood: Generalizing CLIP to Out-of-Distributions

arXiv.org Artificial Intelligence

Out-of-distribution (OOD) generalization, where the model needs to handle distribution shifts from training, is a major challenge of machine learning. Contrastive language-image pre-training (CLIP) models have shown impressive zero-shot ability, but the further adaptation of CLIP on downstream tasks undesirably degrades OOD performances. This paper aims at generalizing CLIP to out-of-distribution test data on downstream tasks. We propose CLIPood, a fine-tuning method that can adapt CLIP models to OOD situations where both domain shifts and open classes may occur on the unseen test data. To exploit the semantic relations between classes from the text modality, CLIPood introduces a new training objective, margin metric softmax (MMS), with class adaptive margins for fine-tuning. To incorporate both pre-trained zero-shot model and fine-tuned task-adaptive model, CLIPood leverages a new optimization strategy, Beta moving average (BMA), to maintain a temporal ensemble weighted by Beta distribution. Experiments on diverse datasets with different OOD scenarios show that CLIPood consistently outperforms existing generalization techniques.


AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task Learning

arXiv.org Artificial Intelligence

Multi-task learning (MTL) models have demonstrated impressive results in computer vision, natural language processing, and recommender systems. Even though many approaches have been proposed, how well these approaches balance different tasks on each parameter still remains unclear. In this paper, we propose to measure the task dominance degree of a parameter by the total updates of each task on this parameter. Specifically, we compute the total updates by the exponentially decaying Average of the squared Updates (AU) on a parameter from the corresponding task.Based on this novel metric, we observe that many parameters in existing MTL methods, especially those in the higher shared layers, are still dominated by one or several tasks. The dominance of AU is mainly due to the dominance of accumulative gradients from one or several tasks. Motivated by this, we propose a Task-wise Adaptive learning rate approach, AdaTask in short, to separate the \emph{accumulative gradients} and hence the learning rate of each task for each parameter in adaptive learning rate approaches (e.g., AdaGrad, RMSProp, and Adam). Comprehensive experiments on computer vision and recommender system MTL datasets demonstrate that AdaTask significantly improves the performance of dominated tasks, resulting SOTA average task-wise performance. Analysis on both synthetic and real-world datasets shows AdaTask balance parameters in every shared layer well.


Debiased Self-Training for Semi-Supervised Learning

arXiv.org Artificial Intelligence

Deep neural networks achieve remarkable performances on a wide range of tasks with the aid of large-scale labeled datasets. Yet these datasets are time-consuming and labor-exhaustive to obtain on realistic tasks. To mitigate the requirement for labeled data, self-training is widely used in semi-supervised learning by iteratively assigning pseudo labels to unlabeled samples. Despite its popularity, self-training is well-believed to be unreliable and often leads to training instability. Our experimental studies further reveal that the bias in semi-supervised learning arises from both the problem itself and the inappropriate training with potentially incorrect pseudo labels, which accumulates the error in the iterative self-training process. To reduce the above bias, we propose Debiased Self-Training (DST). First, the generation and utilization of pseudo labels are decoupled by two parameter-independent classifier heads to avoid direct error accumulation. Second, we estimate the worst case of self-training bias, where the pseudo labeling function is accurate on labeled samples, yet makes as many mistakes as possible on unlabeled samples. We then adversarially optimize the representations to improve the quality of pseudo labels by avoiding the worst case. Extensive experiments justify that DST achieves an average improvement of 6.3% against state-of-the-art methods on standard semi-supervised learning benchmark datasets and 18.9%$ against FixMatch on 13 diverse tasks. Furthermore, DST can be seamlessly adapted to other self-training methods and help stabilize their training and balance performance across classes in both cases of training from scratch and finetuning from pre-trained models.


Transferable Calibration with Lower Bias and Variance in Domain Adaptation

arXiv.org Machine Learning

Domain Adaptation (DA) enables transferring a learning machine from a labeled source domain to an unlabeled target one. While remarkable advances have been made, most of the existing DA methods focus on improving the target accuracy at inference. How to estimate the predictive uncertainty of DA models is vital for decision-making in safety-critical scenarios but remains the boundary to explore. In this paper, we delve into the open problem of Calibration in DA, which is extremely challenging due to the coexistence of domain shift and the lack of target labels. We first reveal the dilemma that DA models learn higher accuracy at the expense of well-calibrated probabilities. Driven by this finding, we propose Transferable Calibration (TransCal) to achieve more accurate calibration with lower bias and variance in a unified hyperparameter-free optimization framework. As a general post-hoc calibration method, TransCal can be easily applied to recalibrate existing DA methods. Its efficacy has been justified both theoretically and empirically.


Less Confusion More Transferable: Minimum Class Confusion for Versatile Domain Adaptation

arXiv.org Machine Learning

Domain Adaptation (DA) transfers a learning model from a labeled source domain to an unlabeled target domain which follows different distributions. There are a variety of DA scenarios subject to label sets and domain configurations, including closed-set and partial-set DA, as well as multi-source and multi-target DA. It is notable that existing DA methods are generally designed only for a specific scenario, and may underperform for scenarios they are not tailored to. Towards a versatile DA method, a more universal inductive bias other than the domain alignment should be explored. In this paper, we delve into a missing piece of existing methods: class confusion, the tendency that a classifier confuses the predictions between the correct and ambiguous classes for target examples. We unveil that less class confusion explicitly indicates more class discriminability and implicitly implies more domain transferability in all the above scenarios. Based on the more universal inductive bias, we propose a general loss function: Minimum Class Confusion (MCC). It can be characterized by (1) a non-adversarial DA method without explicitly deploying domain alignment, enjoying fast convergence speed (about 3x faster than mainstream adversarial methods); (2) a versatile approach that can handle Closed-Set, Partial-Set, Multi-Source, and Multi-Target DA, outperforming the state-of-the-art methods in these scenarios, especially on the largest and hardest dataset to date (7.25% on DomainNet). In addition, it can also be used as a general regularizer that is orthogonal and complementary to a variety of existing DA methods, accelerating convergence and pushing those readily competitive methods to a stronger level. We will release our code for reproducibility.