Wang, Xiaoying
GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution
Zhu, Qiwei, Li, Kai, Zhang, Guojing, Wang, Xiaoying, Huang, Jianqiang, Li, Xilai
In recent years, deep neural networks, including Convolutional Neural Networks, Transformers, and State Space Models, have achieved significant progress in Remote Sensing Image (RSI) Super-Resolution (SR). However, existing SR methods typically overlook the complementary relationship between global and local dependencies. These methods either focus on capturing local information or prioritize global information, which results in models that are unable to effectively capture both global and local features simultaneously. Moreover, their computational cost becomes prohibitive when applied to large-scale RSIs. To address these challenges, we introduce the novel application of Receptance Weighted Key Value (RWKV) to RSI-SR, which captures long-range dependencies with linear complexity. To simultaneously model global and local features, we propose the Global-Detail dual-branch structure, GDSR, which performs SR reconstruction by paralleling RWKV and convolutional operations to handle large-scale RSIs. Furthermore, we introduce the Global-Detail Reconstruction Module (GDRM) as an intermediary between the two branches to bridge their complementary roles. In addition, we propose Wavelet Loss, a loss function that effectively captures high-frequency detail information in images, thereby enhancing the visual quality of SR, particularly in terms of detail reconstruction. Extensive experiments on several benchmarks, including AID, AID_CDM, RSSRD-QH, and RSSRD-QH_CDM, demonstrate that GSDR outperforms the state-of-the-art Transformer-based method HAT by an average of 0.05 dB in PSNR, while using only 63% of its parameters and 51% of its FLOPs, achieving an inference speed 2.9 times faster. Furthermore, the Wavelet Loss shows excellent generalization across various architectures, providing a novel perspective for RSI-SR enhancement.
Research on Violent Text Detection System Based on BERT-fasttext Model
Yang, Yongsheng, Wang, Xiaoying
In the digital age of today, the internet has become an indispensable platform for people's lives, work, and information exchange. However, the problem of violent text proliferation in the network environment has arisen, which has brought about many negative effects. In view of this situation, it is particularly important to build an effective system for cutting off violent text. The study of violent text cutting off based on the BERT-fasttext model has significant meaning. BERT is a pre-trained language model with strong natural language understanding ability, which can deeply mine and analyze text semantic information; Fasttext itself is an efficient text classification tool with low complexity and good effect, which can quickly provide basic judgments for text processing. By combining the two and applying them to the system for cutting off violent text, on the one hand, it can accurately identify violent text, and on the other hand, it can efficiently and reasonably cut off the content, preventing harmful information from spreading freely on the network. Compared with the single BERT model and fasttext, the accuracy was improved by 0.7% and 0.8%, respectively. Through this model, it is helpful to purify the network environment, maintain the health of network information, and create a positive, civilized, and harmonious online communication space for netizens, driving the development of social networking, information dissemination, and other aspects in a more benign direction.