Wang, Xiaolin
Characterization of Large Language Model Development in the Datacenter
Hu, Qinghao, Ye, Zhisheng, Wang, Zerui, Wang, Guoteng, Zhang, Meng, Chen, Qiaoling, Sun, Peng, Lin, Dahua, Wang, Xiaolin, Luo, Yingwei, Wen, Yonggang, Zhang, Tianwei
Large Language Models (LLMs) have presented impressive performance across several transformative tasks. However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs, often riddled with numerous challenges such as frequent hardware failures, intricate parallelization strategies, and imbalanced resource utilization. In this paper, we present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme. Specifically, we investigate discrepancies between LLMs and prior task-specific Deep Learning (DL) workloads, explore resource utilization patterns, and identify the impact of various job failures. Our analysis summarizes hurdles we encountered and uncovers potential opportunities to optimize systems tailored for LLMs. Furthermore, we introduce our system efforts: (1) fault-tolerant pretraining, which enhances fault tolerance through LLM-involved failure diagnosis and automatic recovery. (2) decoupled scheduling for evaluation, which achieves timely performance feedback via trial decomposition and scheduling optimization.
Automated Learning for Deformable Medical Image Registration by Jointly Optimizing Network Architectures and Objective Functions
Fan, Xin, Li, Zi, Li, Ziyang, Wang, Xiaolin, Liu, Risheng, Luo, Zhongxuan, Huang, Hao
Deformable image registration plays a critical role in various tasks of medical image analysis. A successful registration algorithm, either derived from conventional energy optimization or deep networks requires tremendous efforts from computer experts to well design registration energy or to carefully tune network architectures for the specific type of medical data. To tackle the aforementioned problems, this paper proposes an automated learning registration algorithm (AutoReg) that cooperatively optimizes both architectures and their corresponding training objectives, enabling non-computer experts, e.g., medical/clinical users, to conveniently find off-the-shelf registration algorithms for diverse scenarios. Specifically, we establish a triple-level framework to deduce registration network architectures and objectives with an auto-searching mechanism and cooperating optimization. We conduct image registration experiments on multi-site volume datasets and various registration tasks. Extensive results demonstrate that our AutoReg may automatically learn an optimal deep registration network for given volumes and achieve state-of-the-art performance, also significantly improving computation efficiency than the mainstream UNet architectures (from 0.558 to 0.270 seconds for a 3D image pair on the same configuration).
CytonRL: an Efficient Reinforcement Learning Open-source Toolkit Implemented in C++
Wang, Xiaolin
This paper presents an open-source enforcement learning toolkit named CytonRL (https://github.com/arthurxlw/cytonRL). The toolkit implements four recent advanced deep Q-learning algorithms from scratch using C++ and NVIDIA's GPU-accelerated libraries. The code is simple and elegant, owing to an open-source general-purpose neural network library named CytonLib. Benchmark shows that the toolkit achieves competitive performances on the popular Atari game of Breakout.