Wang, Wenxin
Multi-Layered Safety of Redundant Robot Manipulators via Task-Oriented Planning and Control
Jia, Xinyu, Wang, Wenxin, Yang, Jun, Pan, Yongping, Yu, Haoyong
Ensuring safety is crucial to promote the application of robot manipulators in open workspace. Factors such as sensor errors or unpredictable collisions make the environment full of uncertainties. In this work, we investigate these potential safety challenges on redundant robot manipulators, and propose a task-oriented planning and control framework to achieve multi-layered safety while maintaining efficient task execution. Our approach consists of two main parts: a task-oriented trajectory planner based on multiple-shooting model predictive control method, and a torque controller that allows safe and efficient collision reaction using only proprioceptive data. Through extensive simulations and real-hardware experiments, we demonstrate that the proposed framework can effectively handle uncertain static or dynamic obstacles, and perform disturbance resistance in manipulation tasks when unforeseen contacts occur. All code will be open-sourced to benefit the community.
Alternating Direction Method of Multipliers-Based Parallel Optimization for Multi-Agent Collision-Free Model Predictive Control
Cheng, Zilong, Ma, Jun, Wang, Wenxin, Zhu, Zicheng, de Silva, Clarence W., Lee, Tong Heng
This paper investigates the collision-free control problem for multi-agent systems. For such multi-agent systems, it is the typical situation where conventional methods using either the usual centralized model predictive control (MPC), or even the distributed counterpart, would suffer from substantial difficulty in balancing optimality and computational efficiency. Additionally, the non-convex characteristics that invariably arise in such collision-free control and optimization problems render it difficult to effectively derive a reliable solution (and also to thoroughly analyze the associated convergence properties). To overcome these challenging issues, this work establishes a suitably novel parallel computation framework through an innovative mathematical problem formulation; and then with this framework and formulation, a parallel algorithm based on alternating direction method of multipliers (ADMM) is presented to solve the sub-problems arising from the resulting parallel structure. Furthermore, an efficient and intuitive initialization procedure is developed to accelerate the optimization process, and the optimum is thus determined with significantly improved computational efficiency. As supported by rigorous proofs, the convergence of the proposed ADMM iterations for this non-convex optimization problem is analyzed and discussed in detail. Finally, a simulation with a group of unmanned aerial vehicles (UAVs) serves as an illustrative example here to demonstrate the effectiveness and efficiency of the proposed approach. Also, the simulation results verify significant improvements in accuracy and computational efficiency compared to other baselines, including primal quadratic mixed integer programming (PQ-MIP), non-convex quadratic mixed integer programming (NC-MIP), and non-convex quadratically constrained quadratic programming (NC-QCQP).
Data-Driven Predictive Control Towards Multi-Agent Motion Planning With Non-Parametric Closed-Loop Behavior Learning
Ma, Jun, Cheng, Zilong, Wang, Wenxin, Mamun, Abdullah Al, de Silva, Clarence W., Lee, Tong Heng
In many specific scenarios, accurate and effective system identification is a commonly encountered challenge in the model predictive control (MPC) formulation. As a consequence, the overall system performance could be significantly weakened in outcome when the traditional MPC algorithm is adopted under those circumstances when such accuracy is lacking. This paper investigates a non-parametric closed-loop behavior learning method for multi-agent motion planning, which underpins a data-driven predictive control framework. Utilizing an innovative methodology with closed-loop input/output measurements of the unknown system, the behavior of the system is learned based on the collected dataset, and thus the constructed non-parametric predictive model can be used to determine the optimal control actions. This non-parametric predictive control framework alleviates the heavy computational burden commonly encountered in the optimization procedures typically in alternate methodologies requiring open-loop input/output measurement data collection and parametric system identification. The proposed data-driven approach is also shown to preserve good robustness properties. Finally, a multi-UAV system is used to demonstrate the highly effective outcome of this promising development.
A Multimodal Alerting System for Online Class Quality Assurance
Chen, Jiahao, Li, Hang, Wang, Wenxin, Ding, Wenbiao, Huang, Gale Yan, Liu, Zitao
Online 1 on 1 class is created for more personalized learning experience. It demands a large number of teaching resources, which are scarce in China. To alleviate this problem, we build a platform (marketplace), i.e., \emph{Dahai} to allow college students from top Chinese universities to register as part-time instructors for the online 1 on 1 classes. To warn the unqualified instructors and ensure the overall education quality, we build a monitoring and alerting system by utilizing multimodal information from the online environment. Our system mainly consists of two key components: banned word detector and class quality predictor. The system performance is demonstrated both offline and online. By conducting experimental evaluation of real-world online courses, we are able to achieve 74.3\% alerting accuracy in our production environment.