Goto

Collaborating Authors

 Wang, Wentao


Rapid Word Learning Through Meta In-Context Learning

arXiv.org Artificial Intelligence

Humans can quickly learn a new word from a few illustrative examples, and then systematically and flexibly use it in novel contexts. Yet the abilities of current language models for few-shot word learning, and methods for improving these abilities, are underexplored. In this study, we introduce a novel method, Meta-training for IN-context learNing Of Words (Minnow). This method trains language models to generate new examples of a word's usage given a few in-context examples, using a special placeholder token to represent the new word. This training is repeated on many new words to develop a general word-learning ability. We find that training models from scratch with Minnow on human-scale child-directed language enables strong few-shot word learning, comparable to a large language model (LLM) pre-trained on orders of magnitude more data. Furthermore, through discriminative and generative evaluations, we demonstrate that finetuning pre-trained LLMs with Minnow improves their ability to discriminate between new words, identify syntactic categories of new words, and generate reasonable new usages and definitions for new words, based on one or a few in-context examples. These findings highlight the data efficiency of Minnow and its potential to improve language model performance in word learning tasks.


Towards Efficient Motion Planning for UAVs: Lazy A* Search with Motion Primitives

arXiv.org Artificial Intelligence

Search-based motion planning algorithms have been widely utilized for unmanned aerial vehicles (UAVs). However, deploying these algorithms on real UAVs faces challenges due to limited onboard computational resources. The algorithms struggle to find solutions in high-dimensional search spaces and require considerable time to ensure that the trajectories are dynamically feasible. This paper incorporates the lazy search concept into search-based planning algorithms to address the critical issue of real-time planning for collision-free and dynamically feasible trajectories on UAVs. We demonstrate that the lazy search motion planning algorithm can efficiently find optimal trajectories and significantly improve computational efficiency.


FoAM: Foresight-Augmented Multi-Task Imitation Policy for Robotic Manipulation

arXiv.org Artificial Intelligence

Multi-task imitation learning (MTIL) has shown significant potential in robotic manipulation by enabling agents to perform various tasks using a unified policy. This simplifies the policy deployment and enhances the agent's adaptability across different contexts. However, key challenges remain, such as maintaining action reliability (e.g., avoiding abnormal action sequences that deviate from nominal task trajectories), distinguishing between similar tasks, and generalizing to unseen scenarios. To address these challenges, we introduce the Foresight-Augmented Manipulation Policy (FoAM), an innovative MTIL framework. FoAM not only learns to mimic expert actions but also predicts the visual outcomes of those actions to enhance decision-making. Additionally, it integrates multi-modal goal inputs, such as visual and language prompts, overcoming the limitations of single-conditioned policies. We evaluated FoAM across over 100 tasks in both simulation and real-world settings, demonstrating that it significantly improves IL policy performance, outperforming current state-of-the-art IL baselines by up to 41% in success rate. Furthermore, we released a simulation benchmark for robotic manipulation, featuring 10 task suites and over 80 challenging tasks designed for multi-task policy training and evaluation. See project homepage https://projFoAM.github.io/ for project details.


HGTDP-DTA: Hybrid Graph-Transformer with Dynamic Prompt for Drug-Target Binding Affinity Prediction

arXiv.org Artificial Intelligence

Drug target binding affinity (DTA) is a key criterion for drug screening. Existing experimental methods are time-consuming and rely on limited structural and domain information. While learning-based methods can model sequence and structural information, they struggle to integrate contextual data and often lack comprehensive modeling of drug-target interactions. In this study, we propose a novel DTA prediction method, termed HGTDP-DTA, which utilizes dynamic prompts within a hybrid Graph-Transformer framework. Our method generates context-specific prompts for each drug-target pair, enhancing the model's ability to capture unique interactions. The introduction of prompt tuning further optimizes the prediction process by filtering out irrelevant noise and emphasizing task-relevant information, dynamically adjusting the input features of the molecular graph. The proposed hybrid Graph-Transformer architecture combines structural information from Graph Convolutional Networks (GCNs) with sequence information captured by Transformers, facilitating the interaction between global and local information. Additionally, we adopted the multi-view feature fusion method to project molecular graph views and affinity subgraph views into a common feature space, effectively combining structural and contextual information. Experiments on two widely used public datasets, Davis and KIBA, show that HGTDP-DTA outperforms state-of-the-art DTA prediction methods in both prediction performance and generalization ability.


Deep Learning Powered Estimate of The Extrinsic Parameters on Unmanned Surface Vehicles

arXiv.org Artificial Intelligence

Unmanned Surface Vehicles (USVs) are pivotal in marine exploration, but their sensors' accuracy is compromised by the dynamic marine environment. Traditional calibration methods fall short in these conditions. This paper introduces a deep learning architecture that predicts changes in the USV's dynamic metacenter and refines sensors' extrinsic parameters in real time using a Time-Sequence General Regression Neural Network (GRNN) with Euler angles as input. Simulation data from Unity3D ensures robust training and testing. Experimental results show that the Time-Sequence GRNN achieves the lowest mean squared error (MSE) loss, outperforming traditional neural networks. This method significantly enhances sensor calibration for USVs, promising improved data accuracy in challenging maritime conditions. Future work will refine the network and validate results with real-world data.


Cycle-YOLO: A Efficient and Robust Framework for Pavement Damage Detection

arXiv.org Artificial Intelligence

With the development of modern society, traffic volume continues to increase in most countries worldwide, leading to an increase in the rate of pavement damage Therefore, the real-time and highly accurate pavement damage detection and maintenance have become the current need. In this paper, an enhanced pavement damage detection method with CycleGAN and improved YOLOv5 algorithm is presented. We selected 7644 self-collected images of pavement damage samples as the initial dataset and augmented it by CycleGAN. Due to a substantial difference between the images generated by CycleGAN and real road images, we proposed a data enhancement method based on an improved Scharr filter, CycleGAN, and Laplacian pyramid. To improve the target recognition effect on a complex background and solve the problem that the spatial pyramid pooling-fast module in the YOLOv5 network cannot handle multiscale targets, we introduced the convolutional block attention module attention mechanism and proposed the atrous spatial pyramid pooling with squeeze-and-excitation structure. In addition, we optimized the loss function of YOLOv5 by replacing the CIoU with EIoU. The experimental results showed that our algorithm achieved a precision of 0.872, recall of 0.854, and mean average precision@0.5 of 0.882 in detecting three main types of pavement damage: cracks, potholes, and patching. On the GPU, its frames per second reached 68, meeting the requirements for real-time detection. Its overall performance even exceeded the current more advanced YOLOv7 and achieved good results in practical applications, providing a basis for decision-making in pavement damage detection and prevention.


A systematic investigation of learnability from single child linguistic input

arXiv.org Artificial Intelligence

Language models (LMs) have demonstrated remarkable proficiency in generating linguistically coherent text, sparking discussions about their relevance to understanding human language learnability. However, a significant gap exists between the training data for these models and the linguistic input a child receives. LMs are typically trained on data that is orders of magnitude larger and fundamentally different from child-directed speech (Warstadt and Bowman, 2022; Warstadt et al., 2023; Frank, 2023a). Addressing this discrepancy, our research focuses on training LMs on subsets of a single child's linguistic input. Previously, Wang, Vong, Kim, and Lake (2023) found that LMs trained in this setting can form syntactic and semantic word clusters and develop sensitivity to certain linguistic phenomena, but they only considered LSTMs and simpler neural networks trained from just one single-child dataset. Here, to examine the robustness of learnability from single-child input, we systematically train six different model architectures on five datasets (3 single-child and 2 baselines). We find that the models trained on single-child datasets showed consistent results that matched with previous work, underscoring the robustness of forming meaningful syntactic and semantic representations from a subset of a child's linguistic input.


Self-supervised learning of video representations from a child's perspective

arXiv.org Artificial Intelligence

Children learn powerful internal models of the world around them from a few years of egocentric visual experience. Can such internal models be learned from a child's visual experience with highly generic learning algorithms or do they require strong inductive biases? Recent advances in collecting large-scale, longitudinal, developmentally realistic video datasets and generic self-supervised learning (SSL) algorithms are allowing us to begin to tackle this nature vs. nurture question. However, existing work typically focuses on image-based SSL algorithms and visual capabilities that can be learned from static images (e.g. object recognition), thus ignoring temporal aspects of the world. To close this gap, here we train self-supervised video models on longitudinal, egocentric headcam recordings collected from a child over a two year period in their early development (6-31 months). The resulting models are highly effective at facilitating the learning of action concepts from a small number of labeled examples; they have favorable data size scaling properties; and they display emergent video interpolation capabilities. Video models also learn more robust object representations than image-based models trained with the exact same data. These results suggest that important temporal aspects of a child's internal model of the world may be learnable from their visual experience using highly generic learning algorithms and without strong inductive biases.


DeepArt: A Benchmark to Advance Fidelity Research in AI-Generated Content

arXiv.org Artificial Intelligence

This paper explores the image synthesis capabilities of GPT-4, a leading multi-modal large language model. We establish a benchmark for evaluating the fidelity of texture features in images generated by GPT-4, comprising manually painted pictures and their AI-generated counterparts. The contributions of this study are threefold: First, we provide an in-depth analysis of the fidelity of image synthesis features based on GPT-4, marking the first such study on this state-of-the-art model. Second, the quantitative and qualitative experiments fully reveals the limitations of the GPT-4 model in image synthesis. Third, we have compiled a unique benchmark of manual drawings and corresponding GPT-4-generated images, introducing a new task to advance fidelity research in AI-generated content (AIGC). The dataset is available at: \url{https://github.com/rickwang28574/DeepArt}.


PyPose v0.6: The Imperative Programming Interface for Robotics

arXiv.org Artificial Intelligence

PyPose is an open-source library for robot learning. It combines a learning-based approach with physics-based optimization, which enables seamless end-to-end robot learning. It has been used in many tasks due to its meticulously designed application programming interface (API) and efficient implementation. From its initial launch in early 2022, PyPose has experienced significant enhancements, incorporating a wide variety of new features into its platform. To satisfy the growing demand for understanding and utilizing the library and reduce the learning curve of new users, we present the fundamental design principle of the imperative programming interface, and showcase the flexible usage of diverse functionalities and modules using an extremely simple Dubins car example. We also demonstrate that the PyPose can be easily used to navigate a real quadruped robot with a few lines of code.