Wang, Wenlin
An Optimal Transport Framework for Zero-Shot Learning
Wang, Wenlin, Xu, Hongteng, Wang, Guoyin, Wang, Wenqi, Carin, Lawrence
We present an optimal transport (OT) framework for generalized zero-shot learning (GZSL) of imaging data, seeking to distinguish samples for both seen and unseen classes, with the help of auxiliary attributes. The discrepancy between features and attributes is minimized by solving an optimal transport problem. {Specifically, we build a conditional generative model to generate features from seen-class attributes, and establish an optimal transport between the distribution of the generated features and that of the real features.} The generative model and the optimal transport are optimized iteratively with an attribute-based regularizer, that further enhances the discriminative power of the generated features. A classifier is learned based on the features generated for both the seen and unseen classes. In addition to generalized zero-shot learning, our framework is also applicable to standard and transductive ZSL problems. Experiments show that our optimal transport-based method outperforms state-of-the-art methods on several benchmark datasets.
Collaborative Filtering with A Synthetic Feedback Loop
Wang, Wenlin, Xu, Hongteng, Zhang, Ruiyi, Wang, Wenqi, Carin, Lawrence
We propose a novel learning framework for recommendation systems, assisting collaborative filtering with a synthetic feedback loop. The proposed framework consists of a "recommender" and a "virtual user." The recommender is formulizd as a collaborative-filtering method, recommending items according to observed user behavior. The virtual user estimates rewards from the recommended items and generates the influence of the rewards on observed user behavior. The recommender connected with the virtual user constructs a closed loop, that recommends users with items and imitates the unobserved feedback of the users to the recommended items. The synthetic feedback is used to augment observed user behavior and improve recommendation results. Such a model can be interpreted as the inverse reinforcement learning, which can be learned effectively via rollout (simulation). Experimental results show that the proposed framework is able to boost the performance of existing collaborative filtering methods on multiple datasets.
Improving Textual Network Learning with Variational Homophilic Embeddings
Wang, Wenlin, Tao, Chenyang, Gan, Zhe, Wang, Guoyin, Chen, Liqun, Zhang, Xinyuan, Zhang, Ruiyi, Yang, Qian, Henao, Ricardo, Carin, Lawrence
The performance of many network learning applications crucially hinges on the success of network embedding algorithms, which aim to encode rich network information into low-dimensional vertex-based vector representations. This paper considers a novel variational formulation of network embeddings, with special focus on textual networks. Different from most existing methods that optimize a discriminative objective, we introduce Variational Homophilic Embedding (VHE), a fully generative model that learns network embeddings by modeling the semantic (textual) information with a variational autoencoder, while accounting for the structural (topology) information through a novel homophilic prior design. Homophilic vertex embeddings encourage similar embedding vectors for related (connected) vertices. The proposed VHE promises better generalization for downstream tasks, robustness to incomplete observations, and the ability to generalize to unseen vertices. Extensive experiments on real-world networks, for multiple tasks, demonstrate that the proposed method consistently achieves superior performance relative to competing state-of-the-art approaches.
Ouroboros: On Accelerating Training of Transformer-Based Language Models
Yang, Qian, Huo, Zhouyuan, Wang, Wenlin, Huang, Heng, Carin, Lawrence
Language models are essential for natural language processing (NLP) tasks, such as machine translation and text summarization. Remarkable performance has been demonstrated recently across many NLP domains via a Transformer-based language model with over a billion parameters, verifying the benefits of model size. Model parallelism is required if a model is too large to fit in a single computing device. Current methods for model parallelism either suffer from backward locking in backpropagation or are not applicable to language models. We propose the first model-parallel algorithm that speeds the training of Transformer-based language models. We also prove that our proposed algorithm is guaranteed to converge to critical points for non-convex problems. Extensive experiments on Transformer and Transformer-XL language models demonstrate that the proposed algorithm obtains a much faster speedup beyond data parallelism, with comparable or better accuracy. Code to reproduce experiments is to be found at \url{https://github.com/LaraQianYang/Ouroboros}.
On Norm-Agnostic Robustness of Adversarial Training
Li, Bai, Chen, Changyou, Wang, Wenlin, Carin, Lawrence
Adversarial examples are carefully perturbed in-puts for fooling machine learning models. A well-acknowledged defense method against such examples is adversarial training, where adversarial examples are injected into training data to increase robustness. In this paper, we propose a new attack to unveil an undesired property of the state-of-the-art adversarial training, that is it fails to obtain robustness against perturbations in $\ell_2$ and $\ell_\infty$ norms simultaneously. We discuss a possible solution to this issue and its limitations as well.
Distilled Wasserstein Learning for Word Embedding and Topic Modeling
Xu, Hongteng, Wang, Wenlin, Liu, Wei, Carin, Lawrence
We propose a novel Wasserstein method with a distillation mechanism, yielding joint learning of word embeddings and topics. The proposed method is based on the fact that the Euclidean distance between word embeddings may be employed as the underlying distance in the Wasserstein topic model. The word distributions of topics, their optimal transport to the word distributions of documents, and the embeddings of words are learned in a unified framework. When learning the topic model, we leverage a distilled ground-distance matrix to update the topic distributions and smoothly calculate the corresponding optimal transports. Such a strategy provides the updating of word embeddings with robust guidance, improving algorithm convergence. As an application, we focus on patient admission records, in which the proposed method embeds the codes of diseases and procedures and learns the topics of admissions, obtaining superior performance on clinically-meaningful disease network construction, mortality prediction as a function of admission codes, and procedure recommendation.
Distilled Wasserstein Learning for Word Embedding and Topic Modeling
Xu, Hongteng, Wang, Wenlin, Liu, Wei, Carin, Lawrence
We propose a novel Wasserstein method with a distillation mechanism, yielding joint learning of word embeddings and topics. The proposed method is based on the fact that the Euclidean distance between word embeddings may be employed as the underlying distance in the Wasserstein topic model. The word distributions of topics, their optimal transport to the word distributions of documents, and the embeddings of words are learned in a unified framework. When learning the topic model, we leverage a distilled ground-distance matrix to update the topic distributions and smoothly calculate the corresponding optimal transports. Such a strategy provides the updating of word embeddings with robust guidance, improving algorithm convergence. As an application, we focus on patient admission records, in which the proposed method embeds the codes of diseases and procedures and learns the topics of admissions, obtaining superior performance on clinically-meaningful disease network construction, mortality prediction as a function of admission codes, and procedure recommendation.
Distilled Wasserstein Learning for Word Embedding and Topic Modeling
Xu, Hongteng, Wang, Wenlin, Liu, Wei, Carin, Lawrence
We propose a novel Wasserstein method with a distillation mechanism, yielding joint learning of word embeddings and topics. The proposed method is based on the fact that the Euclidean distance between word embeddings may be employed as the underlying distance in the Wasserstein topic model. The word distributions of topics, their optimal transports to the word distributions of documents, and the embeddings of words are learned in a unified framework. When learning the topic model, we leverage a distilled underlying distance matrix to update the topic distributions and smoothly calculate the corresponding optimal transports. Such a strategy provides the updating of word embeddings with robust guidance, improving the algorithmic convergence. As an application, we focus on patient admission records, in which the proposed method embeds the codes of diseases and procedures and learns the topics of admissions, obtaining superior performance on clinically-meaningful disease network construction, mortality prediction as a function of admission codes, and procedure recommendation.
Second-Order Adversarial Attack and Certifiable Robustness
Li, Bai, Chen, Changyou, Wang, Wenlin, Carin, Lawrence
We propose a powerful second-order attack method that outperforms existing attack methods on reducing the accuracy of state-of-the-art defense models based on adversarial training. The effectiveness of our attack method motivates an investigation of provable robustness of a defense model. To this end, we introduce a framework that allows one to obtain a certifiable lower bound on the prediction accuracy against adversarial examples. We conduct experiments to show the effectiveness of our attack method. At the same time, our defense models obtain higher accuracies compared to previous works under our proposed attack.
A Unified Particle-Optimization Framework for Scalable Bayesian Sampling
Chen, Changyou, Zhang, Ruiyi, Wang, Wenlin, Li, Bai, Chen, Liqun
There has been recent interest in developing scalable Bayesian sampling methods for big-data analysis, such as stochastic gradient MCMC (SG-MCMC) and Stein variational gradient descent (SVGD). A standard SG-MCMC algorithm simulates samples from a discrete-time Markov chain to approximate a target distribution, thus samples could be highly correlated, an undesired property for SG-MCMC. In contrary, SVGD directly optimizes a set of particles to approximate a target distribution, and thus is able to obtain good approximate with relatively much fewer samples. In this paper, we propose a principle particle-optimization framework based on Wasserstein gradient flows to unify SG-MCMC and SVGD, and to allow new algorithms to be developed. Our framework interprets SG-MCMC as particle optimization, revealing strong connections between SG-MCMC and SVGD. The key component of our framework is several particle-approximate techniques to efficiently solve the original partial differential equations on the space of probability measures. Extensive experiments on both synthetic data and deep neural networks demonstrate the effectiveness and efficiency of our framework for scalable Bayesian sampling.