Goto

Collaborating Authors

 Wang, Wenjun


External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation

arXiv.org Artificial Intelligence

Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.


InfiR : Crafting Effective Small Language Models and Multimodal Small Language Models in Reasoning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have made significant advancements in reasoning capabilities. However, they still face challenges such as high computational demands and privacy concerns. This paper focuses on developing efficient Small Language Models (SLMs) and Multimodal Small Language Models (MSLMs) that retain competitive reasoning abilities. We introduce a novel training pipeline that enhances reasoning capabilities and facilitates deployment on edge devices, achieving state-of-the-art performance while minimizing development costs. \InfR~ aims to advance AI systems by improving reasoning, reducing adoption barriers, and addressing privacy concerns through smaller model sizes. Resources are available at https://github. com/Reallm-Labs/InfiR.


Less is More: A Simple yet Effective Token Reduction Method for Efficient Multi-modal LLMs

arXiv.org Artificial Intelligence

The rapid advancement of Multimodal Large Language Models (MLLMs) has led to remarkable performances across various domains. However, this progress is accompanied by a substantial surge in the resource consumption of these models. We address this pressing issue by introducing a new approach, Token Reduction using CLIP Metric (TRIM), aimed at improving the efficiency of MLLMs without sacrificing their performance. Inspired by human attention patterns in Visual Question Answering (VQA) tasks, TRIM presents a fresh perspective on the selection and reduction of image tokens. The TRIM method has been extensively tested across 12 datasets, and the results demonstrate a significant reduction in computational overhead while maintaining a consistent level of performance. This research marks a critical stride in efficient MLLM development, promoting greater accessibility and sustainability of high-performing models.


MLDGG: Meta-Learning for Domain Generalization on Graphs

arXiv.org Artificial Intelligence

Domain generalization on graphs aims to develop models with robust generalization capabilities, ensuring effective performance on the testing set despite disparities between testing and training distributions. However, existing methods often rely on static encoders directly applied to the target domain, constraining its flexible adaptability. In contrast to conventional methodologies, which concentrate on developing specific generalized models, our framework, MLDGG, endeavors to achieve adaptable generalization across diverse domains by integrating cross-multi-domain meta-learning with structure learning and semantic identification. Initially, it introduces a generalized structure learner to mitigate the adverse effects of task-unrelated edges, enhancing the comprehensiveness of representations learned by Graph Neural Networks (GNNs) while capturing shared structural information across domains. Subsequently, a representation learner is designed to disentangle domain-invariant semantic and domain-specific variation information in node embedding by leveraging causal reasoning for semantic identification, further enhancing generalization. In the context of meta-learning, meta-parameters for both learners are optimized to facilitate knowledge transfer and enable effective adaptation to graphs through fine-tuning within the target domains, where target graphs are inaccessible during training. Our empirical results demonstrate that MLDGG surpasses baseline methods, showcasing its effectiveness in three different distribution shift settings.


SEGMN: A Structure-Enhanced Graph Matching Network for Graph Similarity Learning

arXiv.org Artificial Intelligence

Graph similarity computation (GSC) aims to quantify the similarity score between two graphs. Although recent GSC methods based on graph neural networks (GNNs) take advantage of intra-graph structures in message passing, few of them fully utilize the structures presented by edges to boost the representation of their connected nodes. Moreover, previous cross-graph node embedding matching lacks the perception of the overall structure of the graph pair, due to the fact that the node representations from GNNs are confined to the intra-graph structure, causing the unreasonable similarity score. Intuitively, the cross-graph structure represented in the assignment graph is helpful to rectify the inappropriate matching. Therefore, we propose a structure-enhanced graph matching network (SEGMN). Equipped with a dual embedding learning module and a structure perception matching module, SEGMN achieves structure enhancement in both embedding learning and cross-graph matching. The dual embedding learning module incorporates adjacent edge representation into each node to achieve a structure-enhanced representation. The structure perception matching module achieves cross-graph structure enhancement through assignment graph convolution. The similarity score of each cross-graph node pair can be rectified by aggregating messages from structurally relevant node pairs. Experimental results on benchmark datasets demonstrate that SEGMN outperforms the state-of-the-art GSC methods in the GED regression task, and the structure perception matching module is plug-and-play, which can further improve the performance of the baselines by up to 25%.


Unconstrained Model Merging for Enhanced LLM Reasoning

arXiv.org Artificial Intelligence

Recent advancements in building domain-specific large language models (LLMs) have shown remarkable success, especially in tasks requiring reasoning abilities like logical inference over complex relationships and multi-step problem solving. However, creating a powerful all-in-one LLM remains challenging due to the need for proprietary data and vast computational resources. As a resource-friendly alternative, we explore the potential of merging multiple expert models into a single LLM. Existing studies on model merging mainly focus on generalist LLMs instead of domain experts, or the LLMs under the same architecture and size. In this work, we propose an unconstrained model merging framework that accommodates both homogeneous and heterogeneous model architectures with a focus on reasoning tasks. A fine-grained layer-wise weight merging strategy is designed for homogeneous models merging, while heterogeneous model merging is built upon the probabilistic distribution knowledge derived from instruction-response fine-tuning data. Across 7 benchmarks and 9 reasoning-optimized LLMs, we reveal key findings that combinatorial reasoning emerges from merging which surpasses simple additive effects. We propose that unconstrained model merging could serve as a foundation for decentralized LLMs, marking a notable progression from the existing centralized LLM framework. This evolution could enhance wider participation and stimulate additional advancement in the field of artificial intelligence, effectively addressing the constraints posed by centralized models.


Review-LLM: Harnessing Large Language Models for Personalized Review Generation

arXiv.org Artificial Intelligence

Product review generation is an important task in recommender systems, which could provide explanation and persuasiveness for the recommendation. Recently, Large Language Models (LLMs, e.g., ChatGPT) have shown superior text modeling and generating ability, which could be applied in review generation. However, directly applying the LLMs for generating reviews might be troubled by the ``polite'' phenomenon of the LLMs and could not generate personalized reviews (e.g., negative reviews). In this paper, we propose Review-LLM that customizes LLMs for personalized review generation. Firstly, we construct the prompt input by aggregating user historical behaviors, which include corresponding item titles and reviews. This enables the LLMs to capture user interest features and review writing style. Secondly, we incorporate ratings as indicators of satisfaction into the prompt, which could further improve the model's understanding of user preferences and the sentiment tendency control of generated reviews. Finally, we feed the prompt text into LLMs, and use Supervised Fine-Tuning (SFT) to make the model generate personalized reviews for the given user and target item. Experimental results on the real-world dataset show that our fine-tuned model could achieve better review generation performance than existing close-source LLMs.


Mini Honor of Kings: A Lightweight Environment for Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Games are widely used as research environments for multi-agent reinforcement learning (MARL), but they pose three significant challenges: limited customization, high computational demands, and oversimplification. To address these issues, we introduce the first publicly available map editor for the popular mobile game Honor of Kings and design a lightweight environment, Mini Honor of Kings (Mini HoK), for researchers to conduct experiments. Mini HoK is highly efficient, allowing experiments to be run on personal PCs or laptops while still presenting sufficient challenges for existing MARL algorithms. We have tested our environment on common MARL algorithms and demonstrated that these algorithms have yet to find optimal solutions within this environment. This facilitates the dissemination and advancement of MARL methods within the research community. Additionally, we hope that more researchers will leverage the Honor of Kings map editor to develop innovative and scientifically valuable new maps. Our code and user manual are available at: https://github.com/tencent-ailab/mini-hok.


Graphs Generalization under Distribution Shifts

arXiv.org Artificial Intelligence

Traditional machine learning methods heavily rely on the independent and identically distribution assumption, which imposes limitations when the test distribution deviates from the training distribution. To address this crucial issue, out-of-distribution (OOD) generalization, which aims to achieve satisfactory generalization performance when faced with unknown distribution shifts, has made a significant process. However, the OOD method for graph-structured data currently lacks clarity and remains relatively unexplored due to two primary challenges. Firstly, distribution shifts on graphs often occur simultaneously on node attributes and graph topology. Secondly, capturing invariant information amidst diverse distribution shifts proves to be a formidable challenge. To overcome these obstacles, in this paper, we introduce a novel framework, namely Graph Learning Invariant Domain genERation (GLIDER). The goal is to (1) diversify variations across domains by modeling the potential seen or unseen variations of attribute distribution and topological structure and (2) minimize the discrepancy of the variation in a representation space where the target is to predict semantic labels. Extensive experiment results indicate that our model outperforms baseline methods on node-level OOD generalization across domains in distribution shift on node features and topological structures simultaneously.


Contrastive Representation Learning Based on Multiple Node-centered Subgraphs

arXiv.org Artificial Intelligence

As the basic element of graph-structured data, node has been recognized as the main object of study in graph representation learning. A single node intuitively has multiple node-centered subgraphs from the whole graph (e.g., one person in a social network has multiple social circles based on his different relationships). We study this intuition under the framework of graph contrastive learning, and propose a multiple node-centered subgraphs contrastive representation learning method to learn node representation on graphs in a self-supervised way. Specifically, we carefully design a series of node-centered regional subgraphs of the central node. Then, the mutual information between different subgraphs of the same node is maximized by contrastive loss. Experiments on various real-world datasets and different downstream tasks demonstrate that our model has achieved state-of-the-art results.