Wang, Weiqi
ChatGPT Evaluation on Sentence Level Relations: A Focus on Temporal, Causal, and Discourse Relations
Chan, Chunkit, Cheng, Jiayang, Wang, Weiqi, Jiang, Yuxin, Fang, Tianqing, Liu, Xin, Song, Yangqiu
This paper aims to quantitatively evaluate the performance of ChatGPT, an interactive large language model, on inter-sentential relations such as temporal relations, causal relations, and discourse relations. Given ChatGPT's promising performance across various tasks, we conduct extensive evaluations on the whole test sets of 13 datasets, including temporal and causal relations, PDTB2.0-based and dialogue-based discourse relations, and downstream applications on discourse understanding. To achieve reliable results, we adopt three tailored prompt templates for each task, including the zero-shot prompt template, zero-shot prompt engineering (PE) template, and in-context learning (ICL) prompt template, to establish the initial baseline scores for all popular sentence-pair relation classification tasks for the first time. We find that ChatGPT exhibits strong performance in detecting and reasoning about causal relations, while it may not be proficient in identifying the temporal order between two events. It can recognize most discourse relations with existing explicit discourse connectives, but the implicit discourse relation still remains a challenging task. Meanwhile, ChatGPT performs poorly in the dialogue discourse parsing task that requires structural understanding in a dialogue before being aware of the discourse relation.
FolkScope: Intention Knowledge Graph Construction for E-commerce Commonsense Discovery
Yu, Changlong, Wang, Weiqi, Liu, Xin, Bai, Jiaxin, Song, Yangqiu, Li, Zheng, Gao, Yifan, Cao, Tianyu, Yin, Bing
Understanding users' intentions in e-commerce platforms requires commonsense knowledge. In this paper, we present FolkScope, an intention knowledge graph construction framework to reveal the structure of humans' minds about purchasing items. As commonsense knowledge is usually ineffable and not expressed explicitly, it is challenging to perform information extraction. Thus, we propose a new approach that leverages the generation power of large language models~(LLMs) and human-in-the-loop annotation to semi-automatically construct the knowledge graph. LLMs first generate intention assertions via e-commerce-specific prompts to explain shopping behaviors, where the intention can be an open reason or a predicate falling into one of 18 categories aligning with ConceptNet, e.g., IsA, MadeOf, UsedFor, etc. Then we annotate plausibility and typicality labels of sampled intentions as training data in order to populate human judgments to all automatic generations. Last, to structurize the assertions, we propose pattern mining and conceptualization to form more condensed and abstract knowledge. Extensive evaluations and studies demonstrate that our constructed knowledge graph can well model e-commerce knowledge and have many potential applications.
CAT: A Contextualized Conceptualization and Instantiation Framework for Commonsense Reasoning
Wang, Weiqi, Fang, Tianqing, Xu, Baixuan, Bo, Chun Yi Louis, Song, Yangqiu, Chen, Lei
Commonsense reasoning, aiming at endowing machines with a human-like ability to make situational presumptions, is extremely challenging to generalize. For someone who barely knows about "meditation," while is knowledgeable about "singing," he can still infer that "meditation makes people relaxed" from the existing knowledge that "singing makes people relaxed" by first conceptualizing "singing" as a "relaxing event" and then instantiating that event to "meditation." This process, known as conceptual induction and deduction, is fundamental to commonsense reasoning while lacking both labeled data and methodologies to enhance commonsense modeling. To fill such a research gap, we propose CAT (Contextualized ConceptuAlization and InsTantiation), a semi-supervised learning framework that integrates event conceptualization and instantiation to conceptualize commonsense knowledge bases at scale. Extensive experiments show that our framework achieves state-of-the-art performances on two conceptualization tasks, and the acquired abstract commonsense knowledge can significantly improve commonsense inference modeling. Our code, data, and fine-tuned models are publicly available at https://github.com/HKUST-KnowComp/CAT.
COLA: Contextualized Commonsense Causal Reasoning from the Causal Inference Perspective
Wang, Zhaowei, Do, Quyet V., Zhang, Hongming, Zhang, Jiayao, Wang, Weiqi, Fang, Tianqing, Song, Yangqiu, Wong, Ginny Y., See, Simon
Detecting commonsense causal relations (causation) between events has long been an essential yet challenging task. Given that events are complicated, an event may have different causes under various contexts. Thus, exploiting context plays an essential role in detecting causal relations. Meanwhile, previous works about commonsense causation only consider two events and ignore their context, simplifying the task formulation. This paper proposes a new task to detect commonsense causation between two events in an event sequence (i.e., context), called contextualized commonsense causal reasoning. We also design a zero-shot framework: COLA (Contextualized Commonsense Causality Reasoner) to solve the task from the causal inference perspective. This framework obtains rich incidental supervision from temporality and balances covariates from multiple timestamps to remove confounding effects. Our extensive experiments show that COLA can detect commonsense causality more accurately than baselines.
CKBP v2: An Expert-Annotated Evaluation Set for Commonsense Knowledge Base Population
Fang, Tianqing, Do, Quyet V., Choi, Sehyun, Wang, Weiqi, Song, Yangqiu
Populating Commonsense Knowledge Bases (CSKB) is an important yet hard task in NLP, as it tackles knowledge from external sources with unseen events and entities. Fang et al. (2021a) proposed a CSKB Population benchmark with an evaluation set CKBP v1. However, CKBP v1 adopts crowdsourced annotations that suffer from a substantial fraction of incorrect answers, and the evaluation set is not well-aligned with the external knowledge source as a result of random sampling. In this paper, we introduce CKBP v2, a new high-quality CSKB Population benchmark, which addresses the two mentioned problems by using experts instead of crowd-sourced annotation and by adding diversified adversarial samples to make the evaluation set more representative. We conduct extensive experiments comparing state-of-the-art methods for CSKB Population on the new evaluation set for future research comparisons. Empirical results show that the population task is still challenging, even for large language models (LLM) such as ChatGPT. Codes and data are available at https://github.com/HKUST-KnowComp/CSKB-Population.
Rearrange Indoor Scenes for Human-Robot Co-Activity
Wang, Weiqi, Zhao, Zihang, Jiao, Ziyuan, Zhu, Yixin, Zhu, Song-Chun, Liu, Hangxin
We present an optimization-based framework for rearranging indoor furniture to accommodate human-robot co-activities better. The rearrangement aims to afford sufficient accessible space for robot activities without compromising everyday human activities. To retain human activities, our algorithm preserves the functional relations among furniture by integrating spatial and semantic co-occurrence extracted from SUNCG and ConceptNet, respectively. By defining the robot's accessible space by the amount of open space it can traverse and the number of objects it can reach, we formulate the rearrangement for human-robot co-activity as an optimization problem, solved by adaptive simulated annealing (ASA) and covariance matrix adaptation evolution strategy (CMA-ES). Our experiments on the SUNCG dataset quantitatively show that rearranged scenes provide an average of 14% more accessible space and 30% more objects to interact with. The quality of the rearranged scenes is qualitatively validated by a human study, indicating the efficacy of the proposed strategy.
Efficient Task Planning for Mobile Manipulation: a Virtual Kinematic Chain Perspective
Jiao, Ziyuan, Zhang, Zeyu, Wang, Weiqi, Han, David, Zhu, Song-Chun, Zhu, Yixin, Liu, Hangxin
We present a Virtual Kinematic Chain (VKC) perspective, a simple yet effective method, to improve task planning efficacy for mobile manipulation. By consolidating the kinematics of the mobile base, the arm, and the object being manipulated collectively as a whole, this novel VKC perspective naturally defines abstract actions and eliminates unnecessary predicates in describing intermediate poses. As a result, these advantages simplify the design of the planning domain and significantly reduce the search space and branching factors in solving planning problems. In experiments, we implement a task planner using Planning Domain Definition Language (PDDL) with VKC. Compared with conventional domain definition, our VKC-based domain definition is more efficient in both planning time and memory. In addition, abstract actions perform better in producing feasible motion plans and trajectories. We further scale up the VKC-based task planner in complex mobile manipulation tasks. Taken together, these results demonstrate that task planning using VKC for mobile manipulation is not only natural and effective but also introduces new capabilities.
DISCOS: Bridging the Gap between Discourse Knowledge and Commonsense Knowledge
Fang, Tianqing, Zhang, Hongming, Wang, Weiqi, Song, Yangqiu, He, Bin
Commonsense knowledge is crucial for artificial intelligence systems to understand natural language. Previous commonsense knowledge acquisition approaches typically rely on human annotations (e.g., ATOMIC) or text generation models (e.g., COMET). Human annotation could provide high-quality commonsense knowledge, yet its high cost often results in relatively small scale and low coverage. On the other hand, generation models have the potential to automatically generate more knowledge. Nonetheless, machine learning models often fit the training data too well to generate novel knowledge in high quality, thus still suffering from coverage problems. To address the limitations of previous approaches, in this paper, we propose an alternative commonsense knowledge acquisition framework DISCOS (from DIScourse to COmmonSense), which automatically mines expensive complex commonsense knowledge from more affordable linguistic knowledge resources. Experiments demonstrate that we can successfully convert discourse knowledge over eventualities from ASER, a large-scale discourse knowledge graph, into inferential if-then commonsense knowledge defined in ATOMIC without any additional annotation effort. Further study suggests that DISCOS significantly outperforms previous supervised approaches in terms of novelty and diversity with comparable quality. In total, we can acquire 3.4M ATOMIC-like inferential commonsense knowledge by populating ATOMIC on the core part of ASER. Codes and data are available at https://github.com/HKUST-KnowComp/DISCOS-commonsense.