Goto

Collaborating Authors

 Wang, Weiping


Think out Loud: Emotion Deducing Explanation in Dialogues

arXiv.org Artificial Intelligence

Humans convey emotions through daily dialogues, making emotion understanding a crucial step of affective intelligence. To understand emotions in dialogues, machines are asked to recognize the emotion for an utterance (Emotion Recognition in Dialogues, ERD); based on the emotion, then find causal utterances for the emotion (Emotion Cause Extraction in Dialogues, ECED). The setting of the two tasks requires first ERD and then ECED, ignoring the mutual complement between emotion and cause. To fix this, some new tasks are proposed to extract them simultaneously. Although the current research on these tasks has excellent achievements, simply identifying emotion-related factors by classification modeling lacks realizing the specific thinking process of causes stimulating the emotion in an explainable way. This thinking process especially reflected in the reasoning ability of Large Language Models (LLMs) is under-explored. To this end, we propose a new task "Emotion Deducing Explanation in Dialogues" (EDEN). EDEN recognizes emotion and causes in an explicitly thinking way. That is, models need to generate an explanation text, which first summarizes the causes; analyzes the inner activities of the speakers triggered by the causes using common sense; then guesses the emotion accordingly. To support the study of EDEN, based on the existing resources in ECED, we construct two EDEN datasets by human effort. We further evaluate different models on EDEN and find that LLMs are more competent than conventional PLMs. Besides, EDEN can help LLMs achieve better recognition of emotions and causes, which explores a new research direction of explainable emotion understanding in dialogues.


Light-PEFT: Lightening Parameter-Efficient Fine-Tuning via Early Pruning

arXiv.org Artificial Intelligence

Parameter-efficient fine-tuning (PEFT) has emerged as the predominant technique for fine-tuning in the era of large language models. However, existing PEFT methods still have inadequate training efficiency. Firstly, the utilization of large-scale foundation models during the training process is excessively redundant for certain fine-tuning tasks. Secondly, as the model size increases, the growth in trainable parameters of empirically added PEFT modules becomes non-negligible and redundant, leading to inefficiency. To achieve task-specific efficient fine-tuning, we propose the Light-PEFT framework, which includes two methods: Masked Early Pruning of the Foundation Model and Multi-Granularity Early Pruning of PEFT. The Light-PEFT framework allows for the simultaneous estimation of redundant parameters in both the foundation model and PEFT modules during the early stage of training. These parameters can then be pruned for more efficient fine-tuning. We validate our approach on GLUE, SuperGLUE, QA tasks, and various models. With Light-PEFT, parameters of the foundation model can be pruned by up to over 40%, while still controlling trainable parameters to be only 25% of the original PEFT method. Compared to utilizing the PEFT method directly, Light-PEFT achieves training and inference speedup, reduces memory usage, and maintains comparable performance and the plug-and-play feature of PEFT.


Disrupting Diffusion: Token-Level Attention Erasure Attack against Diffusion-based Customization

arXiv.org Artificial Intelligence

With the development of diffusion-based customization methods like DreamBooth, individuals now have access to train the models that can generate their personalized images. Despite the convenience, malicious users have misused these techniques to create fake images, thereby triggering a privacy security crisis. In light of this, proactive adversarial attacks are proposed to protect users against customization. The adversarial examples are trained to distort the customization model's outputs and thus block the misuse. In this paper, we propose DisDiff (Disrupting Diffusion), a novel adversarial attack method to disrupt the diffusion model outputs. We first delve into the intrinsic image-text relationships, well-known as cross-attention, and empirically find that the subject-identifier token plays an important role in guiding image generation. Thus, we propose the Cross-Attention Erasure module to explicitly "erase" the indicated attention maps and disrupt the text guidance. Besides,we analyze the influence of the sampling process of the diffusion model on Projected Gradient Descent (PGD) attack and introduce a novel Merit Sampling Scheduler to adaptively modulate the perturbation updating amplitude in a step-aware manner. Our DisDiff outperforms the state-of-the-art methods by 12.75% of FDFR scores and 7.25% of ISM scores across two facial benchmarks and two commonly used prompts on average.


Applying Self-supervised Learning to Network Intrusion Detection for Network Flows with Graph Neural Network

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have garnered intensive attention for Network Intrusion Detection System (NIDS) due to their suitability for representing the network traffic flows. However, most present GNN-based methods for NIDS are supervised or semi-supervised. Network flows need to be manually annotated as supervisory labels, a process that is time-consuming or even impossible, making NIDS difficult to adapt to potentially complex attacks, especially in large-scale real-world scenarios. The existing GNN-based self-supervised methods focus on the binary classification of network flow as benign or not, and thus fail to reveal the types of attack in practice. This paper studies the application of GNNs to identify the specific types of network flows in an unsupervised manner. We first design an encoder to obtain graph embedding, that introduces the graph attention mechanism and considers the edge information as the only essential factor. Then, a self-supervised method based on graph contrastive learning is proposed. The method samples center nodes, and for each center node, generates subgraph by it and its direct neighbor nodes, and corresponding contrastive subgraph from the interpolated graph, and finally constructs positive and negative samples from subgraphs. Furthermore, a structured contrastive loss function based on edge features and graph local topology is introduced. To the best of our knowledge, it is the first GNN-based self-supervised method for the multiclass classification of network flows in NIDS. Detailed experiments conducted on four real-world databases (NF-Bot-IoT, NF-Bot-IoT-v2, NF-CSE-CIC-IDS2018, and NF-CSE-CIC-IDS2018-v2) systematically compare our model with the state-of-the-art supervised and self-supervised models, illustrating the considerable potential of our method. Our code is accessible through https://github.com/renj-xu/NEGSC.


Previously on the Stories: Recap Snippet Identification for Story Reading

arXiv.org Artificial Intelligence

Similar to the "previously-on" scenes in TV shows, recaps can help book reading by recalling the readers' memory about the important elements in previous texts to better understand the ongoing plot. Despite its usefulness, this application has not been well studied in the NLP community. We propose the first benchmark on this useful task called Recap Snippet Identification with a hand-crafted evaluation dataset. Our experiments show that the proposed task is challenging to PLMs, LLMs, and proposed methods as the task requires a deep understanding of the plot correlation between snippets.


Are Large Language Models Table-based Fact-Checkers?

arXiv.org Artificial Intelligence

Table-based Fact Verification (TFV) aims to extract the entailment relation between statements and structured tables. Existing TFV methods based on small-scaled models suffer from insufficient labeled data and weak zero-shot ability. Recently, the appearance of Large Language Models (LLMs) has gained lots of attraction in research fields. They have shown powerful zero-shot and in-context learning abilities on several NLP tasks, but their potential on TFV is still unknown. In this work, we implement a preliminary study about whether LLMs are table-based fact-checkers. In detail, we design diverse prompts to explore how the in-context learning can help LLMs in TFV, i.e., zero-shot and few-shot TFV capability. Besides, we carefully design and construct TFV instructions to study the performance gain brought by the instruction tuning of LLMs. Experimental results demonstrate that LLMs can achieve acceptable results on zero-shot and few-shot TFV with prompt engineering, while instruction-tuning can stimulate the TFV capability significantly. We also make some valuable findings about the format of zero-shot prompts and the number of in-context examples. Finally, we analyze some possible directions to promote the accuracy of TFV via LLMs, which is beneficial to further research of table reasoning.


Distilling Mathematical Reasoning Capabilities into Small Language Models

arXiv.org Artificial Intelligence

This work addresses the challenge of democratizing advanced Large Language Models (LLMs) by compressing their mathematical reasoning capabilities into sub-billion parameter Small Language Models (SLMs) without compromising performance. We introduce Equation-of-Thought Distillation (EoTD), a novel technique that encapsulates the reasoning process into equation-based representations to construct an EoTD dataset for fine-tuning SLMs. Additionally, we propose the Ensemble Thoughts Distillation (ETD) framework to enhance the reasoning performance of SLMs. This involves creating a reasoning dataset with multiple thought processes, including Chain-of-Thought (CoT), Program-of-Thought (PoT), and Equation-of-Thought (EoT), and using it for fine-tuning. Our experimental findings demonstrate that EoTD significantly boosts the reasoning abilities of SLMs, while ETD enables these models to achieve state-of-the-art reasoning performance.


FedNS: A Fast Sketching Newton-Type Algorithm for Federated Learning

arXiv.org Artificial Intelligence

Recent Newton-type federated learning algorithms have demonstrated linear convergence with respect to the communication rounds. However, communicating Hessian matrices is often unfeasible due to their quadratic communication complexity. In this paper, we introduce a novel approach to tackle this issue while still achieving fast convergence rates. Our proposed method, named as Federated Newton Sketch methods (FedNS), approximates the centralized Newton's method by communicating the sketched square-root Hessian instead of the exact Hessian. To enhance communication efficiency, we reduce the sketch size to match the effective dimension of the Hessian matrix. We provide convergence analysis based on statistical learning for the federated Newton sketch approaches. Specifically, our approaches reach super-linear convergence rates w.r.t. the communication rounds for the first time. We validate the effectiveness of our algorithms through various experiments, which coincide with our theoretical findings.


ASWT-SGNN: Adaptive Spectral Wavelet Transform-based Self-Supervised Graph Neural Network

arXiv.org Artificial Intelligence

Graph Comparative Learning (GCL) is a self-supervised method that combines the advantages of Graph Convolutional Networks (GCNs) and comparative learning, making it promising for learning node representations. However, the GCN encoders used in these methods rely on the Fourier transform to learn fixed graph representations, which is inherently limited by the uncertainty principle involving spatial and spectral localization trade-offs. To overcome the inflexibility of existing methods and the computationally expensive eigen-decomposition and dense matrix multiplication, this paper proposes an Adaptive Spectral Wavelet Transform-based Self-Supervised Graph Neural Network (ASWT-SGNN). The proposed method employs spectral adaptive polynomials to approximate the filter function and optimize the wavelet using contrast loss. This design enables the creation of local filters in both spectral and spatial domains, allowing flexible aggregation of neighborhood information at various scales and facilitating controlled transformation between local and global information. Compared to existing methods, the proposed approach reduces computational complexity and addresses the limitation of graph convolutional neural networks, which are constrained by graph size and lack flexible control over the neighborhood aspect. Extensive experiments on eight benchmark datasets demonstrate that ASWT-SGNN accurately approximates the filter function in high-density spectral regions, avoiding costly eigen-decomposition. Furthermore, ASWT-SGNN achieves comparable performance to state-of-the-art models in node classification tasks.


Enhancing Empathetic and Emotion Support Dialogue Generation with Prophetic Commonsense Inference

arXiv.org Artificial Intelligence

The interest in Empathetic and Emotional Support conversations among the public has significantly increased. To offer more sensitive and understanding responses, leveraging commonsense knowledge has become a common strategy to better understand psychological aspects and causality. However, such commonsense inferences can be out of context and unable to predict upcoming dialogue themes, resulting in responses that lack coherence and empathy. To remedy this issue, we present Prophetic Commonsense Inference, an innovative paradigm for inferring commonsense knowledge. By harnessing the capabilities of Large Language Models in understanding dialogue and making commonsense deductions, we train tunable models to bridge the gap between past and potential future dialogues. Extensive experiments conducted on EmpatheticDialogues and Emotion Support Conversation show that equipping dialogue agents with our proposed prophetic commonsense inference significantly enhances the quality of their responses.