Wang, Weining
VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and Dataset
Chen, Sihan, He, Xingjian, Guo, Longteng, Zhu, Xinxin, Wang, Weining, Tang, Jinhui, Liu, Jing
In this paper, we propose a Vision-Audio-Language Omni-peRception pretraining model (VALOR) for multi-modal understanding and generation. Different from widely-studied vision-language pretraining models, VALOR jointly models relationships of vision, audio and language in an end-to-end manner. It contains three separate encoders for single modality representations, and a decoder for multimodal conditional text generation. We design two pretext tasks to pretrain VALOR model, including Multimodal Grouping Alignment (MGA) and Multimodal Grouping Captioning (MGC). MGA projects vision, language and audio to the same common space, building vision-language, audio-language and audiovisual-language alignment simultaneously. MGC learns how to generate text tokens in conditions of vision, audio or their both. To promote vision-audio-language pretraining research, we construct a large-scale high-quality tri-modality dataset named VALOR-1M, which contains 1M audiable videos with human annotated audiovisual captions. Extensive experiments show that VALOR can learn strong multimodal correlations and be generalized to various downstream tasks (e.g., retrieval, captioning and question answering), with different input modalities (e.g., vision-language, audio-language and audiovisual-language). VALOR achieves new state-of-the-art performances on series of public cross-modality benchmarks. Code and data are available at project page https://casia-iva-group.github.io/projects/VALOR.
Sounding Video Generator: A Unified Framework for Text-guided Sounding Video Generation
Liu, Jiawei, Wang, Weining, Chen, Sihan, Zhu, Xinxin, Liu, Jing
As a combination of visual and audio signals, video is inherently multi-modal. However, existing video generation methods are primarily intended for the synthesis of visual frames, whereas audio signals in realistic videos are disregarded. In this work, we concentrate on a rarely investigated problem of text guided sounding video generation and propose the Sounding Video Generator (SVG), a unified framework for generating realistic videos along with audio signals. Specifically, we present the SVG-VQGAN to transform visual frames and audio melspectrograms into discrete tokens. SVG-VQGAN applies a novel hybrid contrastive learning method to model inter-modal and intra-modal consistency and improve the quantized representations. A cross-modal attention module is employed to extract associated features of visual frames and audio signals for contrastive learning. Then, a Transformer-based decoder is used to model associations between texts, visual frames, and audio signals at token level for auto-regressive sounding video generation. AudioSetCap, a human annotated text-video-audio paired dataset, is produced for training SVG. Experimental results demonstrate the superiority of our method when compared with existing textto-video generation methods as well as audio generation methods on Kinetics and VAS datasets.
Temporal Memory Attention for Video Semantic Segmentation
Wang, Hao, Wang, Weining, Liu, Jing
Video semantic segmentation requires to utilize the complex temporal relations between frames of the video sequence. Previous works usually exploit accurate optical flow to leverage the temporal relations, which suffer much from heavy computational cost. In this paper, we propose a Temporal Memory Attention Network (TMANet) to adaptively integrate the long-range temporal relations over the video sequence based on the self-attention mechanism without exhaustive optical flow prediction. Specially, we construct a memory using several past frames to store the temporal information of the current frame. We then propose a temporal memory attention module to capture the relation between the current frame and the memory to enhance the representation of the current frame. Our method achieves new state-of-the-art performances on two challenging video semantic segmentation datasets, particularly 80.3% mIoU on Cityscapes and 76.5% mIoU on CamVid with ResNet-50.