Wang, Wanyu
Stepwise Reasoning Error Disruption Attack of LLMs
Peng, Jingyu, Wang, Maolin, Zhao, Xiangyu, Zhang, Kai, Wang, Wanyu, Jia, Pengyue, Liu, Qidong, Guo, Ruocheng, Liu, Qi
Large language models (LLMs) have made remarkable strides in complex reasoning tasks, but their safety and robustness in reasoning processes remain underexplored. Existing attacks on LLM reasoning are constrained by specific settings or lack of imperceptibility, limiting their feasibility and generalizability. To address these challenges, we propose the Stepwise rEasoning Error Disruption (SEED) attack, which subtly injects errors into prior reasoning steps to mislead the model into producing incorrect subsequent reasoning and final answers. Unlike previous methods, SEED is compatible with zero-shot and few-shot settings, maintains the natural reasoning flow, and ensures covert execution without modifying the instruction. Extensive experiments on four datasets across four different models demonstrate SEED's effectiveness, revealing the vulnerabilities of LLMs to disruptions in reasoning processes. These findings underscore the need for greater attention to the robustness of LLM reasoning to ensure safety in practical applications.
LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation
Liu, Qidong, Wu, Xian, Wang, Wanyu, Wang, Yejing, Zhu, Yuanshao, Zhao, Xiangyu, Tian, Feng, Zheng, Yefeng
Sequential Recommender Systems (SRS), which model a user's interaction history to predict the next item of interest, are widely used in various applications. However, existing SRS often struggle with low-popularity items, a challenge known as the long-tail problem. This issue leads to reduced serendipity for users and diminished profits for sellers, ultimately harming the overall system. Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity, making it a promising solution to this problem. In this paper, we introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance SRS performance. To bridge the gap between general-purpose LLM and the recommendation domain, we propose a Supervised Contrastive Fine-Tuning (SCFT) approach. This approach includes attribute-level data augmentation and a tailored contrastive loss to make LLM more recommendation-friendly. Additionally, we emphasize the importance of integrating collaborative signals into LLM-generated embeddings, for which we propose Recommendation Adaptation Training (RAT). This further refines the embeddings for optimal use in SRS. The LLMEmb-derived embeddings can be seamlessly integrated with any SRS models, underscoring the practical value. Comprehensive experiments conducted on three real-world datasets demonstrate that LLMEmb significantly outperforms existing methods across multiple SRS models. The code for our method is released online https://github.com/Applied-Machine-Learning-Lab/LLMEmb.
Pre-train, Align, and Disentangle: Empowering Sequential Recommendation with Large Language Models
Wang, Yuhao, Pan, Junwei, Zhao, Xiangyu, Jia, Pengyue, Wang, Wanyu, Wang, Yuan, Liu, Yue, Liu, Dapeng, Jiang, Jie
Sequential recommendation (SR) aims to model the sequential dependencies in users' historical interactions to better capture their evolving interests. However, existing SR approaches primarily rely on collaborative data, which leads to limitations such as the cold-start problem and sub-optimal performance. Meanwhile, despite the success of large language models (LLMs), their application in industrial recommender systems is hindered by high inference latency, inability to capture all distribution statistics, and catastrophic forgetting. To this end, we propose a novel Pre-train, Align, and Disentangle (PAD) paradigm to empower recommendation models with LLMs. Specifically, we first pre-train both the SR and LLM models to get collaborative and textual embeddings. Next, a characteristic recommendation-anchored alignment loss is proposed using multi-kernel maximum mean discrepancy with Gaussian kernels. Finally, a triple-experts architecture, consisting aligned and modality-specific experts with disentangled embeddings, is fine-tuned in a frequency-aware manner. Experiments conducted on three public datasets demonstrate the effectiveness of PAD, showing significant improvements and compatibility with various SR backbone models, especially on cold items. The implementation code and datasets will be publicly available.
Efficient and Robust Regularized Federated Recommendation
Liu, Langming, Wang, Wanyu, Zhao, Xiangyu, Zhang, Zijian, Zhang, Chunxu, Lin, Shanru, Wang, Yiqi, Zou, Lixin, Liu, Zitao, Wei, Xuetao, Yin, Hongzhi, Li, Qing
Recommender systems play a pivotal role across practical scenarios, showcasing remarkable capabilities in user preference modeling. However, the centralized learning paradigm predominantly used raises serious privacy concerns. The federated recommender system (FedRS) addresses this by updating models on clients, while a central server orchestrates training without accessing private data. Existing FedRS approaches, however, face unresolved challenges, including non-convex optimization, vulnerability, potential privacy leakage risk, and communication inefficiency. This paper addresses these challenges by reformulating the federated recommendation problem as a convex optimization issue, ensuring convergence to the global optimum. Based on this, we devise a novel method, RFRec, to tackle this optimization problem efficiently. In addition, we propose RFRecF, a highly efficient version that incorporates non-uniform stochastic gradient descent to improve communication efficiency. In user preference modeling, both methods learn local and global models, collaboratively learning users' common and personalized interests under the federated learning setting. Moreover, both methods significantly enhance communication efficiency, robustness, and privacy protection, with theoretical support. Comprehensive evaluations on four benchmark datasets demonstrate RFRec and RFRecF's superior performance compared to diverse baselines.
Editing Factual Knowledge and Explanatory Ability of Medical Large Language Models
Xu, Derong, Zhang, Ziheng, Zhu, Zhihong, Lin, Zhenxi, Liu, Qidong, Wu, Xian, Xu, Tong, Wang, Wanyu, Ye, Yuyang, Zhao, Xiangyu, Zheng, Yefeng, Chen, Enhong
Model editing aims to precisely alter the behaviors of large language models (LLMs) in relation to specific knowledge, while leaving unrelated knowledge intact. This approach has proven effective in addressing issues of hallucination and outdated information in LLMs. However, the potential of using model editing to modify knowledge in the medical field remains largely unexplored, even though resolving hallucination is a pressing need in this area. Our observations indicate that current methods face significant challenges in dealing with specialized and complex knowledge in medical domain. Therefore, we propose MedLaSA, a novel Layer-wise Scalable Adapter strategy for medical model editing. MedLaSA harnesses the strengths of both adding extra parameters and locate-then-edit methods for medical model editing. We utilize causal tracing to identify the association of knowledge in neurons across different layers, and generate a corresponding scale set from the association value for each piece of knowledge. Subsequently, we incorporate scalable adapters into the dense layers of LLMs. These adapters are assigned scaling values based on the corresponding specific knowledge, which allows for the adjustment of the adapter's weight and rank. The more similar the content, the more consistent the scale between them. This ensures precise editing of semantically identical knowledge while avoiding impact on unrelated knowledge. To evaluate the editing impact on the behaviours of LLMs, we propose two model editing studies for medical domain: (1) editing factual knowledge for medical specialization and (2) editing the explanatory ability for complex knowledge. We build two novel medical benchmarking datasets and introduce a series of challenging and comprehensive metrics. Extensive experiments on medical LLMs demonstrate the editing efficiency of MedLaSA, without affecting unrelated knowledge.
Cumulative Distribution Function based General Temporal Point Processes
Wang, Maolin, Pan, Yu, Xu, Zenglin, Guo, Ruocheng, Zhao, Xiangyu, Wang, Wanyu, Wang, Yiqi, Liu, Zitao, Liu, Langming
Temporal Point Processes (TPPs) hold a pivotal role in modeling event sequences across diverse domains, including social networking and e-commerce, and have significantly contributed to the advancement of recommendation systems and information retrieval strategies. Through the analysis of events such as user interactions and transactions, TPPs offer valuable insights into behavioral patterns, facilitating the prediction of future trends. However, accurately forecasting future events remains a formidable challenge due to the intricate nature of these patterns. The integration of Neural Networks with TPPs has ushered in the development of advanced deep TPP models. While these models excel at processing complex and nonlinear temporal data, they encounter limitations in modeling intensity functions, grapple with computational complexities in integral computations, and struggle to capture long-range temporal dependencies effectively. In this study, we introduce the CuFun model, representing a novel approach to TPPs that revolves around the Cumulative Distribution Function (CDF). CuFun stands out by uniquely employing a monotonic neural network for CDF representation, utilizing past events as a scaling factor. This innovation significantly bolsters the model's adaptability and precision across a wide range of data scenarios. Our approach addresses several critical issues inherent in traditional TPP modeling: it simplifies log-likelihood calculations, extends applicability beyond predefined density function forms, and adeptly captures long-range temporal patterns. Our contributions encompass the introduction of a pioneering CDF-based TPP model, the development of a methodology for incorporating past event information into future event prediction, and empirical validation of CuFun's effectiveness through extensive experimentation on synthetic and real-world datasets.
MLPST: MLP is All You Need for Spatio-Temporal Prediction
Zhang, Zijian, Huang, Ze, Hu, Zhiwei, Zhao, Xiangyu, Wang, Wanyu, Liu, Zitao, Zhang, Junbo, Qin, S. Joe, Zhao, Hongwei
Traffic prediction is a typical spatio-temporal data mining task and has great significance to the public transportation system. Considering the demand for its grand application, we recognize key factors for an ideal spatio-temporal prediction method: efficient, lightweight, and effective. However, the current deep model-based spatio-temporal prediction solutions generally own intricate architectures with cumbersome optimization, which can hardly meet these expectations. To accomplish the above goals, we propose an intuitive and novel framework, MLPST, a pure multi-layer perceptron architecture for traffic prediction. Specifically, we first capture spatial relationships from both local and global receptive fields. Then, temporal dependencies in different intervals are comprehensively considered. Through compact and swift MLP processing, MLPST can well capture the spatial and temporal dependencies while requiring only linear computational complexity, as well as model parameters that are more than an order of magnitude lower than baselines. Extensive experiments validated the superior effectiveness and efficiency of MLPST against advanced baselines, and among models with optimal accuracy, MLPST achieves the best time and space efficiency.
PromptST: Prompt-Enhanced Spatio-Temporal Multi-Attribute Prediction
Zhang, Zijian, Zhao, Xiangyu, Liu, Qidong, Zhang, Chunxu, Ma, Qian, Wang, Wanyu, Zhao, Hongwei, Wang, Yiqi, Liu, Zitao
In the era of information explosion, spatio-temporal data mining serves as a critical part of urban management. Considering the various fields demanding attention, e.g., traffic state, human activity, and social event, predicting multiple spatio-temporal attributes simultaneously can alleviate regulatory pressure and foster smart city construction. However, current research can not handle the spatio-temporal multi-attribute prediction well due to the complex relationships between diverse attributes. The key challenge lies in how to address the common spatio-temporal patterns while tackling their distinctions. In this paper, we propose an effective solution for spatio-temporal multi-attribute prediction, PromptST. We devise a spatio-temporal transformer and a parameter-sharing training scheme to address the common knowledge among different spatio-temporal attributes. Then, we elaborate a spatio-temporal prompt tuning strategy to fit the specific attributes in a lightweight manner. Through the pretrain and prompt tuning phases, our PromptST is able to enhance the specific spatio-temoral characteristic capture by prompting the backbone model to fit the specific target attribute while maintaining the learned common knowledge. Extensive experiments on real-world datasets verify that our PromptST attains state-of-the-art performance. Furthermore, we also prove PromptST owns good transferability on unseen spatio-temporal attributes, which brings promising application potential in urban computing. The implementation code is available to ease reproducibility.
AutoMLP: Automated MLP for Sequential Recommendations
Li, Muyang, Zhang, Zijian, Zhao, Xiangyu, Wang, Wanyu, Zhao, Minghao, Wu, Runze, Guo, Ruocheng
Sequential recommender systems aim to predict users' next interested item given their historical interactions. However, a long-standing issue is how to distinguish between users' long/short-term interests, which may be heterogeneous and contribute differently to the next recommendation. Existing approaches usually set pre-defined short-term interest length by exhaustive search or empirical experience, which is either highly inefficient or yields subpar results. The recent advanced transformer-based models can achieve state-of-the-art performances despite the aforementioned issue, but they have a quadratic computational complexity to the length of the input sequence. To this end, this paper proposes a novel sequential recommender system, AutoMLP, aiming for better modeling users' long/short-term interests from their historical interactions. In addition, we design an automated and adaptive search algorithm for preferable short-term interest length via end-to-end optimization. Through extensive experiments, we show that AutoMLP has competitive performance against state-of-the-art methods, while maintaining linear computational complexity.