Wang, Ting-Chun
Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
NVIDIA, null, :, null, Alhaija, Hassan Abu, Alvarez, Jose, Bala, Maciej, Cai, Tiffany, Cao, Tianshi, Cha, Liz, Chen, Joshua, Chen, Mike, Ferroni, Francesco, Fidler, Sanja, Fox, Dieter, Ge, Yunhao, Gu, Jinwei, Hassani, Ali, Isaev, Michael, Jannaty, Pooya, Lan, Shiyi, Lasser, Tobias, Ling, Huan, Liu, Ming-Yu, Liu, Xian, Lu, Yifan, Luo, Alice, Ma, Qianli, Mao, Hanzi, Ramos, Fabio, Ren, Xuanchi, Shen, Tianchang, Tang, Shitao, Wang, Ting-Chun, Wu, Jay, Xu, Jiashu, Xu, Stella, Xie, Kevin, Ye, Yuchong, Yang, Xiaodong, Zeng, Xiaohui, Zeng, Yu
We introduce Cosmos-Transfer1, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack.
Cosmos World Foundation Model Platform for Physical AI
NVIDIA, null, :, null, Agarwal, Niket, Ali, Arslan, Bala, Maciej, Balaji, Yogesh, Barker, Erik, Cai, Tiffany, Chattopadhyay, Prithvijit, Chen, Yongxin, Cui, Yin, Ding, Yifan, Dworakowski, Daniel, Fan, Jiaojiao, Fenzi, Michele, Ferroni, Francesco, Fidler, Sanja, Fox, Dieter, Ge, Songwei, Ge, Yunhao, Gu, Jinwei, Gururani, Siddharth, He, Ethan, Huang, Jiahui, Huffman, Jacob, Jannaty, Pooya, Jin, Jingyi, Kim, Seung Wook, Klรกr, Gergely, Lam, Grace, Lan, Shiyi, Leal-Taixe, Laura, Li, Anqi, Li, Zhaoshuo, Lin, Chen-Hsuan, Lin, Tsung-Yi, Ling, Huan, Liu, Ming-Yu, Liu, Xian, Luo, Alice, Ma, Qianli, Mao, Hanzi, Mo, Kaichun, Mousavian, Arsalan, Nah, Seungjun, Niverty, Sriharsha, Page, David, Paschalidou, Despoina, Patel, Zeeshan, Pavao, Lindsey, Ramezanali, Morteza, Reda, Fitsum, Ren, Xiaowei, Sabavat, Vasanth Rao Naik, Schmerling, Ed, Shi, Stella, Stefaniak, Bartosz, Tang, Shitao, Tchapmi, Lyne, Tredak, Przemek, Tseng, Wei-Cheng, Varghese, Jibin, Wang, Hao, Wang, Haoxiang, Wang, Heng, Wang, Ting-Chun, Wei, Fangyin, Wei, Xinyue, Wu, Jay Zhangjie, Xu, Jiashu, Yang, Wei, Yen-Chen, Lin, Zeng, Xiaohui, Zeng, Yu, Zhang, Jing, Zhang, Qinsheng, Zhang, Yuxuan, Zhao, Qingqing, Zolkowski, Artur
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.
Edify Image: High-Quality Image Generation with Pixel Space Laplacian Diffusion Models
NVIDIA, null, :, null, Atzmon, Yuval, Bala, Maciej, Balaji, Yogesh, Cai, Tiffany, Cui, Yin, Fan, Jiaojiao, Ge, Yunhao, Gururani, Siddharth, Huffman, Jacob, Isaac, Ronald, Jannaty, Pooya, Karras, Tero, Lam, Grace, Lewis, J. P., Licata, Aaron, Lin, Yen-Chen, Liu, Ming-Yu, Ma, Qianli, Mallya, Arun, Martino-Tarr, Ashlee, Mendez, Doug, Nah, Seungjun, Pruett, Chris, Reda, Fitsum, Song, Jiaming, Wang, Ting-Chun, Wei, Fangyin, Zeng, Xiaohui, Zeng, Yu, Zhang, Qinsheng
We introduce Edify Image, a family of diffusion models capable of generating photorealistic image content with pixel-perfect accuracy. Edify Image utilizes cascaded pixel-space diffusion models trained using a novel Laplacian diffusion process, in which image signals at different frequency bands are attenuated at varying rates. Edify Image supports a wide range of applications, including text-to-image synthesis, 4K upsampling, ControlNets, 360 HDR panorama generation, and finetuning for image customization.
Learning to Relight Portrait Images via a Virtual Light Stage and Synthetic-to-Real Adaptation
Yeh, Yu-Ying, Nagano, Koki, Khamis, Sameh, Kautz, Jan, Liu, Ming-Yu, Wang, Ting-Chun
Given a portrait image of a person and an environment map of the target lighting, portrait relighting aims to re-illuminate the person in the image as if the person appeared in an environment with the target lighting. To achieve high-quality results, recent methods rely on deep learning. An effective approach is to supervise the training of deep neural networks with a high-fidelity dataset of desired input-output pairs, captured with a light stage. However, acquiring such data requires an expensive special capture rig and time-consuming efforts, limiting access to only a few resourceful laboratories. To address the limitation, we propose a new approach that can perform on par with the state-of-the-art (SOTA) relighting methods without requiring a light stage. Our approach is based on the realization that a successful relighting of a portrait image depends on two conditions. First, the method needs to mimic the behaviors of physically-based relighting. Second, the output has to be photorealistic. To meet the first condition, we propose to train the relighting network with training data generated by a virtual light stage that performs physically-based rendering on various 3D synthetic humans under different environment maps. To meet the second condition, we develop a novel synthetic-to-real approach to bring photorealism to the relighting network output. In addition to achieving SOTA results, our approach offers several advantages over the prior methods, including controllable glares on glasses and more temporally-consistent results for relighting videos.
Video-to-Video Synthesis
Wang, Ting-Chun, Liu, Ming-Yu, Zhu, Jun-Yan, Liu, Guilin, Tao, Andrew, Kautz, Jan, Catanzaro, Bryan
We study the problem of video-to-video synthesis, whose goal is to learn a mapping function from an input source video (e.g., a sequence of semantic segmentation masks) to an output photorealistic video that precisely depicts the content of the source video. While its image counterpart, the image-to-image translation problem, is a popular topic, the video-to-video synthesis problem is less explored in the literature. Without modeling temporal dynamics, directly applying existing image synthesis approaches to an input video often results in temporally incoherent videos of low visual quality. In this paper, we propose a video-to-video synthesis approach under the generative adversarial learning framework. Through carefully-designed generators and discriminators, coupled with a spatio-temporal adversarial objective, we achieve high-resolution, photorealistic, temporally coherent video results on a diverse set of input formats including segmentation masks, sketches, and poses.
Semantic Image Synthesis with Spatially-Adaptive Normalization
Park, Taesung, Liu, Ming-Yu, Wang, Ting-Chun, Zhu, Jun-Yan
We propose spatially-adaptive normalization, a simple but effective layer for synthesizing photorealistic images given an input semantic layout. Previous methods directly feed the semantic layout as input to the deep network, which is then processed through stacks of convolution, normalization, and nonlinearity layers. We show that this is suboptimal as the normalization layers tend to ``wash away'' semantic information. To address the issue, we propose using the input layout for modulating the activations in normalization layers through a spatially-adaptive, learned transformation. Experiments on several challenging datasets demonstrate the advantage of the proposed method over existing approaches, regarding both visual fidelity and alignment with input layouts. Finally, our model allows user control over both semantic and style as synthesizing images. Code will be available at https://github.com/NVlabs/SPADE .
Video-to-Video Synthesis
Wang, Ting-Chun, Liu, Ming-Yu, Zhu, Jun-Yan, Yakovenko, Nikolai, Tao, Andrew, Kautz, Jan, Catanzaro, Bryan
We study the problem of video-to-video synthesis, whose goal is to learn a mapping function from an input source video (e.g., a sequence of semantic segmentation masks) to an output photorealistic video that precisely depicts the content of the source video. While its image counterpart, the image-to-image translation problem, is a popular topic, the video-to-video synthesis problem is less explored in the literature. Without modeling temporal dynamics, directly applying existing image synthesis approaches to an input video often results in temporally incoherent videos of low visual quality. In this paper, we propose a video-to-video synthesis approach under the generative adversarial learning framework. Through carefully-designed generators and discriminators, coupled with a spatio-temporal adversarial objective, we achieve high-resolution, photorealistic, temporally coherent video results on a diverse set of input formats including segmentation masks, sketches, and poses. Experiments on multiple benchmarks show the advantage of our method compared to strong baselines. In particular, our model is capable of synthesizing 2K resolution videos of street scenes up to 30 seconds long, which significantly advances the state-of-the-art of video synthesis. Finally, we apply our method to future video prediction, outperforming several competing systems. Code, models, and more results are available at our website: https://github.com/NVIDIA/vid2vid. (Please use Adobe Reader to see the embedded videos in the paper.)
Video-to-Video Synthesis
Wang, Ting-Chun, Liu, Ming-Yu, Zhu, Jun-Yan, Yakovenko, Nikolai, Tao, Andrew, Kautz, Jan, Catanzaro, Bryan
We study the problem of video-to-video synthesis, whose goal is to learn a mapping function from an input source video (e.g., a sequence of semantic segmentation masks) to an output photorealistic video that precisely depicts the content of the source video. While its image counterpart, the image-to-image translation problem, is a popular topic, the video-to-video synthesis problem is less explored in the literature. Without modeling temporal dynamics, directly applying existing image synthesis approaches to an input video often results in temporally incoherent videos of low visual quality. In this paper, we propose a video-to-video synthesis approach under the generative adversarial learning framework. Through carefully-designed generators and discriminators, coupled with a spatiotemporal adversarial objective, we achieve high-resolution, photorealistic, temporally coherent video results on a diverse set of input formats including segmentation masks, sketches, and poses. Experiments on multiple benchmarks show the advantage of our method compared to strong baselines. In particular, our model is capable of synthesizing 2K resolution videos of street scenes up to 30 seconds long, which significantly advances the state-of-the-art of video synthesis. Finally, we apply our method to future video prediction, outperforming several competing systems. Code, models, and more results are available at our website.