Goto

Collaborating Authors

 Wang, Ting


Blueprinting the Future: Automatic Item Categorization using Hierarchical Zero-Shot and Few-Shot Classifiers

arXiv.org Artificial Intelligence

In testing industry, precise item categorization is pivotal to align exam questions with the designated content domains outlined in the assessment blueprint. Traditional methods either entail manual classification, which is laborious and error-prone, or utilize machine learning requiring extensive training data, often leading to model underfit or overfit issues. This study unveils a novel approach employing the zero-shot and few-shot Generative Pretrained Transformer (GPT) classifier for hierarchical item categorization, minimizing the necessity for training data, and instead, leveraging human-like language descriptions to define categories. Through a structured python dictionary, the hierarchical nature of examination blueprints is navigated seamlessly, allowing for a tiered classification of items across multiple levels. An initial simulation with artificial data demonstrates the efficacy of this method, achieving an average accuracy of 92.91% measured by the F1 score. This method was further applied to real exam items from the 2022 In-Training Examination (ITE) conducted by the American Board of Family Medicine (ABFM), reclassifying 200 items according to a newly formulated blueprint swiftly in 15 minutes, a task that traditionally could span several days among editors and physicians. This innovative approach not only drastically cuts down classification time but also ensures a consistent, principle-driven categorization, minimizing human biases and discrepancies. The ability to refine classifications by adjusting definitions adds to its robustness and sustainability.


Improving the Robustness of Transformer-based Large Language Models with Dynamic Attention

arXiv.org Artificial Intelligence

Transformer-based models, such as BERT and GPT, have been widely adopted in natural language processing (NLP) due to their exceptional performance. However, recent studies show their vulnerability to textual adversarial attacks where the model's output can be misled by intentionally manipulating the text inputs. Despite various methods that have been proposed to enhance the model's robustness and mitigate this vulnerability, many require heavy consumption resources (e.g., adversarial training) or only provide limited protection (e.g., defensive dropout). In this paper, we propose a novel method called dynamic attention, tailored for the transformer architecture, to enhance the inherent robustness of the model itself against various adversarial attacks. Our method requires no downstream task knowledge and does not incur additional costs. The proposed dynamic attention consists of two modules: (I) attention rectification, which masks or weakens the attention value of the chosen tokens, and (ii) dynamic modeling, which dynamically builds the set of candidate tokens. Extensive experiments demonstrate that dynamic attention significantly mitigates the impact of adversarial attacks, improving up to 33\% better performance than previous methods against widely-used adversarial attacks. The model-level design of dynamic attention enables it to be easily combined with other defense methods (e.g., adversarial training) to further enhance the model's robustness. Furthermore, we demonstrate that dynamic attention preserves the state-of-the-art robustness space of the original model compared to other dynamic modeling methods.


Fewer is More: Trojan Attacks on Parameter-Efficient Fine-Tuning

arXiv.org Artificial Intelligence

Parameter-efficient fine-tuning (PEFT) enables efficient adaptation of pre-trained language models (PLMs) to specific tasks. By tuning only a minimal set of (extra) parameters, PEFT achieves performance comparable to full fine-tuning. However, despite its prevalent use, the security implications of PEFT remain largely unexplored. In this paper, we conduct a pilot study revealing that PEFT exhibits unique vulnerability to trojan attacks. Specifically, we present PETA, a novel attack that accounts for downstream adaptation through bilevel optimization: the upper-level objective embeds the backdoor into a PLM while the lower-level objective simulates PEFT to retain the PLM's task-specific performance. With extensive evaluation across a variety of downstream tasks and trigger designs, we demonstrate PETA's effectiveness in terms of both attack success rate and unaffected clean accuracy, even after the victim user performs PEFT over the backdoored PLM using untainted data. Moreover, we empirically provide possible explanations for PETA's efficacy: the bilevel optimization inherently 'orthogonalizes' the backdoor and PEFT modules, thereby retaining the backdoor throughout PEFT. Based on this insight, we explore a simple defense that omits PEFT in selected layers of the backdoored PLM and unfreezes a subset of these layers' parameters, which is shown to effectively neutralize PETA.


An Intelligent Social Learning-based Optimization Strategy for Black-box Robotic Control with Reinforcement Learning

arXiv.org Artificial Intelligence

Implementing intelligent control of robots is a difficult task, especially when dealing with complex black-box systems, because of the lack of visibility and understanding of how these robots work internally. This paper proposes an Intelligent Social Learning (ISL) algorithm to enable intelligent control of black-box robotic systems. Inspired by mutual learning among individuals in human social groups, ISL includes learning, imitation, and self-study styles. Individuals in the learning style use the Levy flight search strategy to learn from the best performer and form the closest relationships. In the imitation style, individuals mimic the best performer with a second-level rapport by employing a random perturbation strategy. In the self-study style, individuals learn independently using a normal distribution sampling method while maintaining a distant relationship with the best performer. Individuals in the population are regarded as autonomous intelligent agents in each style. Neural networks perform strategic actions in three styles to interact with the environment and the robot and iteratively optimize the network policy. Overall, ISL builds on the principles of intelligent optimization, incorporating ideas from reinforcement learning, and possesses strong search capabilities, fast computation speed, fewer hyperparameters, and insensitivity to sparse rewards. The proposed ISL algorithm is compared with four state-of-the-art methods on six continuous control benchmark cases in MuJoCo to verify its effectiveness and advantages. Furthermore, ISL is adopted in the simulation and experimental grasping tasks of the UR3 robot for validations, and satisfactory solutions are yielded.


IMPRESS: Evaluating the Resilience of Imperceptible Perturbations Against Unauthorized Data Usage in Diffusion-Based Generative AI

arXiv.org Artificial Intelligence

Diffusion-based image generation models, such as Stable Diffusion or DALL-E 2, are able to learn from given images and generate high-quality samples following the guidance from prompts. For instance, they can be used to create artistic images that mimic the style of an artist based on his/her original artworks or to maliciously edit the original images for fake content. However, such ability also brings serious ethical issues without proper authorization from the owner of the original images. In response, several attempts have been made to protect the original images from such unauthorized data usage by adding imperceptible perturbations, which are designed to mislead the diffusion model and make it unable to properly generate new samples. In this work, we introduce a perturbation purification platform, named IMPRESS, to evaluate the effectiveness of imperceptible perturbations as a protective measure. IMPRESS is based on the key observation that imperceptible perturbations could lead to a perceptible inconsistency between the original image and the diffusion-reconstructed image, which can be used to devise a new optimization strategy for purifying the image, which may weaken the protection of the original image from unauthorized data usage (e.g., style mimicking, malicious editing). The proposed IMPRESS platform offers a comprehensive evaluation of several contemporary protection methods, and can be used as an evaluation platform for future protection methods.


MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data Augmentation

arXiv.org Artificial Intelligence

Health risk prediction is one of the fundamental tasks under predictive modeling in the medical domain, which aims to forecast the potential health risks that patients may face in the future using their historical Electronic Health Records (EHR). Researchers have developed several risk prediction models to handle the unique challenges of EHR data, such as its sequential nature, high dimensionality, and inherent noise. These models have yielded impressive results. Nonetheless, a key issue undermining their effectiveness is data insufficiency. A variety of data generation and augmentation methods have been introduced to mitigate this issue by expanding the size of the training data set through the learning of underlying data distributions. However, the performance of these methods is often limited due to their task-unrelated design. To address these shortcomings, this paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion. It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space. Furthermore, MedDiffusion discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data. Experimental evaluation on four real-world medical datasets demonstrates that MedDiffusion outperforms 14 cutting-edge baselines in terms of PR-AUC, F1, and Cohen's Kappa. We also conduct ablation studies and benchmark our model against GAN-based alternatives to further validate the rationality and adaptability of our model design. Additionally, we analyze generated data to offer fresh insights into the model's interpretability.


Defending Pre-trained Language Models as Few-shot Learners against Backdoor Attacks

arXiv.org Artificial Intelligence

Pre-trained language models (PLMs) have demonstrated remarkable performance as few-shot learners. However, their security risks under such settings are largely unexplored. In this work, we conduct a pilot study showing that PLMs as few-shot learners are highly vulnerable to backdoor attacks while existing defenses are inadequate due to the unique challenges of few-shot scenarios. To address such challenges, we advocate MDP, a novel lightweight, pluggable, and effective defense for PLMs as few-shot learners. Specifically, MDP leverages the gap between the masking-sensitivity of poisoned and clean samples: with reference to the limited few-shot data as distributional anchors, it compares the representations of given samples under varying masking and identifies poisoned samples as ones with significant variations. We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness. The empirical evaluation using benchmark datasets and representative attacks validates the efficacy of MDP.


Retrieval-augmented GPT-3.5-based Text-to-SQL Framework with Sample-aware Prompting and Dynamic Revision Chain

arXiv.org Artificial Intelligence

Text-to-SQL aims at generating SQL queries for the given natural language questions and thus helping users to query databases. Prompt learning with large language models (LLMs) has emerged as a recent approach, which designs prompts to lead LLMs to understand the input question and generate the corresponding SQL. However, it faces challenges with strict SQL syntax requirements. Existing work prompts the LLMs with a list of demonstration examples (i.e. question-SQL pairs) to generate SQL, but the fixed prompts can hardly handle the scenario where the semantic gap between the retrieved demonstration and the input question is large. In this paper, we propose a retrieval-augmented prompting method for a LLM-based Text-to-SQL framework, involving sample-aware prompting and a dynamic revision chain. Our approach incorporates sample-aware demonstrations, which include the composition of SQL operators and fine-grained information related to the given question. To retrieve questions sharing similar intents with input questions, we propose two strategies for assisting retrieval. Firstly, we leverage LLMs to simplify the original questions, unifying the syntax and thereby clarifying the users' intentions. To generate executable and accurate SQLs without human intervention, we design a dynamic revision chain which iteratively adapts fine-grained feedback from the previously generated SQL. Experimental results on three Text-to-SQL benchmarks demonstrate the superiority of our method over strong baseline models.


Prompting GPT-3.5 for Text-to-SQL with De-semanticization and Skeleton Retrieval

arXiv.org Artificial Intelligence

Text-to-SQL is a task that converts a natural language question into a structured query language (SQL) to retrieve information from a database. Large language models (LLMs) work well in natural language generation tasks, but they are not specifically pre-trained to understand the syntax and semantics of SQL commands. In this paper, we propose an LLM-based framework for Text-to-SQL which retrieves helpful demonstration examples to prompt LLMs. However, questions with different database schemes can vary widely, even if the intentions behind them are similar and the corresponding SQL queries exhibit similarities. Consequently, it becomes crucial to identify the appropriate SQL demonstrations that align with our requirements. We design a de-semanticization mechanism that extracts question skeletons, allowing us to retrieve similar examples based on their structural similarity. We also model the relationships between question tokens and database schema items (i.e., tables and columns) to filter out scheme-related information. Our framework adapts the range of the database schema in prompts to balance length and valuable information. A fallback mechanism allows for a more detailed schema to be provided if the generated SQL query fails. Ours outperforms state-of-the-art models and demonstrates strong generalization ability on three cross-domain Text-to-SQL benchmarks.


Federated Linear Bandit Learning via Over-the-Air Computation

arXiv.org Artificial Intelligence

In this paper, we investigate federated contextual linear bandit learning within a wireless system that comprises a server and multiple devices. Each device interacts with the environment, selects an action based on the received reward, and sends model updates to the server. The primary objective is to minimize cumulative regret across all devices within a finite time horizon. To reduce the communication overhead, devices communicate with the server via over-the-air computation (AirComp) over noisy fading channels, where the channel noise may distort the signals. In this context, we propose a customized federated linear bandits scheme, where each device transmits an analog signal, and the server receives a superposition of these signals distorted by channel noise. A rigorous mathematical analysis is conducted to determine the regret bound of the proposed scheme. Both theoretical analysis and numerical experiments demonstrate the competitive performance of our proposed scheme in terms of regret bounds in various settings.