Goto

Collaborating Authors

 Wang, Tianzi


Towards Effective and Efficient Non-autoregressive Decoding Using Block-based Attention Mask

arXiv.org Artificial Intelligence

This paper proposes a novel non-autoregressive (NAR) block-based Attention Mask Decoder (AMD) that flexibly balances performance-efficiency trade-offs for Conformer ASR systems. AMD performs parallel NAR inference within contiguous blocks of output labels that are concealed using attention masks, while conducting left-to-right AR prediction and history context amalgamation between blocks. A beam search algorithm is designed to leverage a dynamic fusion of CTC, AR Decoder, and AMD probabilities. Experiments on the LibriSpeech-100hr corpus suggest the tripartite Decoder incorporating the AMD module produces a maximum decoding speed-up ratio of 1.73x over the baseline CTC+AR decoding, while incurring no statistically significant word error rate (WER) increase on the test sets. When operating with the same decoding real time factors, statistically significant WER reductions of up to 0.7% and 0.3% absolute (5.3% and 6.1% relative) were obtained over the CTC+AR baseline.


Homogeneous Speaker Features for On-the-Fly Dysarthric and Elderly Speaker Adaptation

arXiv.org Artificial Intelligence

The application of data-intensive automatic speech recognition (ASR) technologies to dysarthric and elderly adult speech is confronted by their mismatch against healthy and nonaged voices, data scarcity and large speaker-level variability. To this end, this paper proposes two novel data-efficient methods to learn homogeneous dysarthric and elderly speaker-level features for rapid, on-the-fly test-time adaptation of DNN/TDNN and Conformer ASR models. These include: 1) speaker-level variance-regularized spectral basis embedding (VR-SBE) features that exploit a special regularization term to enforce homogeneity of speaker features in adaptation; and 2) feature-based learning hidden unit contributions (f-LHUC) transforms that are conditioned on VR-SBE features. Experiments are conducted on four tasks across two languages: the English UASpeech and TORGO dysarthric speech datasets, the English DementiaBank Pitt and Cantonese JCCOCC MoCA elderly speech corpora. The proposed on-the-fly speaker adaptation techniques consistently outperform baseline iVector and xVector adaptation by statistically significant word or character error rate reductions up to 5.32% absolute (18.57% relative) and batch-mode LHUC speaker adaptation by 2.24% absolute (9.20% relative), while operating with real-time factors speeding up to 33.6 times against xVectors during adaptation. The efficacy of the proposed adaptation techniques is demonstrated in a comparison against current ASR technologies including SSL pre-trained systems on UASpeech, where our best system produces a state-of-the-art WER of 23.33%. Analyses show VR-SBE features and f-LHUC transforms are insensitive to speaker-level data quantity in testtime adaptation. T-SNE visualization reveals they have stronger speaker-level homogeneity than baseline iVectors, xVectors and batch-mode LHUC transforms.


Perceiver-Prompt: Flexible Speaker Adaptation in Whisper for Chinese Disordered Speech Recognition

arXiv.org Artificial Intelligence

Disordered speech recognition profound implications for improving the quality of life for individuals afflicted with, for example, dysarthria. Dysarthric speech recognition encounters challenges including limited data, substantial dissimilarities between dysarthric and non-dysarthric speakers, and significant speaker variations stemming from the disorder. This paper introduces Perceiver-Prompt, a method for speaker adaptation that utilizes P-Tuning on the Whisper large-scale model. We first fine-tune Whisper using LoRA and then integrate a trainable Perceiver to generate fixed-length speaker prompts from variable-length inputs, to improve model recognition of Chinese dysarthric speech. Experimental results from our Chinese dysarthric speech dataset demonstrate consistent improvements in recognition performance with Perceiver-Prompt. Relative reduction up to 13.04% in CER is obtained over the fine-tuned Whisper.


One-pass Multiple Conformer and Foundation Speech Systems Compression and Quantization Using An All-in-one Neural Model

arXiv.org Artificial Intelligence

We propose a novel one-pass multiple ASR systems joint compression and quantization approach using an all-in-one neural model. A single compression cycle allows multiple nested systems with varying Encoder depths, widths, and quantization precision settings to be simultaneously constructed without the need to train and store individual target systems separately. Experiments consistently demonstrate the multiple ASR systems compressed in a single all-in-one model produced a word error rate (WER) comparable to, or lower by up to 1.01\% absolute (6.98\% relative) than individually trained systems of equal complexity. A 3.4x overall system compression and training time speed-up was achieved. Maximum model size compression ratios of 12.8x and 3.93x were obtained over the baseline Switchboard-300hr Conformer and LibriSpeech-100hr fine-tuned wav2vec2.0 models, respectively, incurring no statistically significant WER increase.


Audio-visual End-to-end Multi-channel Speech Separation, Dereverberation and Recognition

arXiv.org Artificial Intelligence

Accurate recognition of cocktail party speech containing overlapping speakers, noise and reverberation remains a highly challenging task to date. Motivated by the invariance of visual modality to acoustic signal corruption, an audio-visual multi-channel speech separation, dereverberation and recognition approach featuring a full incorporation of visual information into all system components is proposed in this paper. The efficacy of the video input is consistently demonstrated in mask-based MVDR speech separation, DNN-WPE or spectral mapping (SpecM) based speech dereverberation front-end and Conformer ASR back-end. Audio-visual integrated front-end architectures performing speech separation and dereverberation in a pipelined or joint fashion via mask-based WPD are investigated. The error cost mismatch between the speech enhancement front-end and ASR back-end components is minimized by end-to-end jointly fine-tuning using either the ASR cost function alone, or its interpolation with the speech enhancement loss. Experiments were conducted on the mixture overlapped and reverberant speech data constructed using simulation or replay of the Oxford LRS2 dataset. The proposed audio-visual multi-channel speech separation, dereverberation and recognition systems consistently outperformed the comparable audio-only baseline by 9.1% and 6.2% absolute (41.7% and 36.0% relative) word error rate (WER) reductions. Consistent speech enhancement improvements were also obtained on PESQ, STOI and SRMR scores.


Hyper-parameter Adaptation of Conformer ASR Systems for Elderly and Dysarthric Speech Recognition

arXiv.org Artificial Intelligence

Parameter impaired speech utterances of single word commands or fine-tuning is often used to exploit the large quantities of nonaged short phrases. A similar study that performed architecture adaptation and healthy speech pre-trained models, while neural architecture was conducted on CTC-based CNN ASR systems [18] hyper-parameters are set using expert knowledge and remain for multilingual speech recognition, revealing that optimal convolutional unchanged. This paper investigates hyper-parameter adaptation module hyper-parameters, e.g. the convolution kernal for Conformer ASR systems that are pre-trained on the size, vary substantially between languages. In contrast, the Librispeech corpus before being domain adapted to the DementiaBank hyper-parameters domain adaptation of state-of-the-art end-toend elderly and UASpeech dysarthric speech datasets. Experimental ASR systems represented by, for example, those based on results suggest that hyper-parameter adaptation produced Conformer models [19-26], remains unvisited for dysarthric word error rate (WER) reductions of 0.45% and 0.67% and elderly speech recognition.


Factorised Speaker-environment Adaptive Training of Conformer Speech Recognition Systems

arXiv.org Artificial Intelligence

Rich sources of variability in natural speech present significant challenges to current data intensive speech recognition technologies. To model both speaker and environment level diversity, this paper proposes a novel Bayesian factorised speaker-environment adaptive training and test time adaptation approach for Conformer ASR models. Speaker and environment level characteristics are separately modeled using compact hidden output transforms, which are then linearly or hierarchically combined to represent any speaker-environment combination. Bayesian learning is further utilized to model the adaptation parameter uncertainty. Experiments on the 300-hr WHAM noise corrupted Switchboard data suggest that factorised adaptation consistently outperforms the baseline and speaker label only adapted Conformers by up to 3.1% absolute (10.4% relative) word error rate reductions. Further analysis shows the proposed method offers potential for rapid adaption to unseen speaker-environment conditions.


Exploiting Cross-domain And Cross-Lingual Ultrasound Tongue Imaging Features For Elderly And Dysarthric Speech Recognition

arXiv.org Artificial Intelligence

Articulatory features are inherently invariant to acoustic signal distortion and have been successfully incorporated into automatic speech recognition (ASR) systems designed for normal speech. Their practical application to atypical task domains such as elderly and disordered speech across languages is often limited by the difficulty in collecting such specialist data from target speakers. This paper presents a cross-domain and cross-lingual A2A inversion approach that utilizes the parallel audio and ultrasound tongue imaging (UTI) data of the 24-hour TaL corpus in A2A model pre-training before being cross-domain and cross-lingual adapted to three datasets across two languages: the English DementiaBank Pitt and Cantonese JCCOCC MoCA elderly speech corpora; and the English TORGO dysarthric speech data, to produce UTI based articulatory features. Experiments conducted on three tasks suggested incorporating the generated articulatory features consistently outperformed the baseline TDNN and Conformer ASR systems constructed using acoustic features only by statistically significant word or character error rate reductions up to 4.75%, 2.59% and 2.07% absolute (14.69%, 10.64% and 22.72% relative) after data augmentation, speaker adaptation and cross system multi-pass decoding were applied.


On-the-Fly Feature Based Rapid Speaker Adaptation for Dysarthric and Elderly Speech Recognition

arXiv.org Artificial Intelligence

Accurate recognition of dysarthric and elderly speech remain challenging tasks to date. Speaker-level heterogeneity attributed to accent or gender, when aggregated with age and speech impairment, create large diversity among these speakers. Scarcity of speaker-level data limits the practical use of data-intensive model based speaker adaptation methods. To this end, this paper proposes two novel forms of data-efficient, feature-based on-the-fly speaker adaptation methods: variance-regularized spectral basis embedding (SVR) and spectral feature driven f-LHUC transforms. Experiments conducted on UASpeech dysarthric and DementiaBank Pitt elderly speech corpora suggest the proposed on-the-fly speaker adaptation approaches consistently outperform baseline iVector adapted hybrid DNN/TDNN and E2E Conformer systems by statistically significant WER reduction of 2.48%-2.85% absolute (7.92%-8.06% relative), and offline model based LHUC adaptation by 1.82% absolute (5.63% relative) respectively.


Use of Speech Impairment Severity for Dysarthric Speech Recognition

arXiv.org Artificial Intelligence

A key challenge in dysarthric speech recognition is the speaker-level diversity attributed to both speaker-identity associated factors such as gender, and speech impairment severity. Most prior researches on addressing this issue focused on using speaker-identity only. To this end, this paper proposes a novel set of techniques to use both severity and speaker-identity in dysarthric speech recognition: a) multitask training incorporating severity prediction error; b) speaker-severity aware auxiliary feature adaptation; and c) structured LHUC transforms separately conditioned on speaker-identity and severity. Experiments conducted on UASpeech suggest incorporating additional speech impairment severity into state-of-the-art hybrid DNN, E2E Conformer and pre-trained Wav2vec 2.0 ASR systems produced statistically significant WER reductions up to 4.78% (14.03% relative). Using the best system the lowest published WER of 17.82% (51.25% on very low intelligibility) was obtained on UASpeech.